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Lessons learned

Which is the best choice to transcribe a new collection?

One must use all the available training corpora even if 
some of them are quite different from the target collec-
tion.

Is it better to have fewer collections with a high number of 
samples or more collections with fewer samples each?

It is preferable to have more variability even at the cost of a 
smaller sample set.

How important is it to be aware of the collection to 
transcribe for selecting the right corpora to train 
the model?
It is indeed relevant, and depending on the difficulty (for 
example, whether or not it is handwritten) the differences 
in performance can be very varied.

Does the introduction of a synthetic corpus improve 
the performance?

Yes, the introduction of a reliable synthetic collection adds 
size and variability to the training data, enabling better per-
formance rates.

Results

Learning framework

What to do when facing a new collection recognition process?
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Performance measured using Symbol Error Rate (SER). Computed as the average 
number of elementary editing operations (insertions, deletions, or substitutions) 
required to convert the predicted sequence into the reference.
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