

A Cross-Version Approach to Audio Representation Learning for Orchestral Music

Michael Krause¹, Christof Weiß², Meinard Müller¹

¹International Audio Laboratories Erlangen, Germany, ²University of Würzburg, Germany

Summary

- Learn from correspondences between different versions of a music piece
- Learned features capture instrumentation + outperform a single-version baseline

2. Proposed Approach

- Key idea: utilize cross-version data
- Score is the same for all versions:
 same instrumentation / same pitches

4. Evaluation: Self-Similarity

References

- [1] Matthew C. McCallum, "Unsupervised learning of deep features for music segmentation," in ICASSP, 2019.
- [2] Janne Spijkervet and John Ashley Burgoyne, "Contrastive learning of musical representations," in ISMIR, 2021.

1. Representation Learning for Music

- Learn representations using pretext task
- Apply for downstream tasks

Pretext task: Learning from temporal proximity

3. Evaluation: Setup

- 20h cross-version dataset of orchestral music
- VGG-like CNN architecture
- CV: proposed cross-version approach
- SV: traditional single-version method
- Ref_T: reference annotations of instrument activity
- Ref_H: reference annotations of pitch classes
- Sup: supervised instrument classific. baseline

5. Evaluation: Probing

 Train and evaluate small downstream network for instrument classification

	AP	AUC	F1
SV	0.708	0.735	0.590
CV	0.753	0.795	0.657
Sup	0.838	0.881	0.772

6. Conclusions

- Cross-version pretext task learns instrumentation despite using no instrument labels
- Future work: explore impact of augmentations

