SYMBOLIC MUSIC REPRESENTATIONS FOR CLASSIFICATION TASKS: A SYSTEMATIC EVALUATION

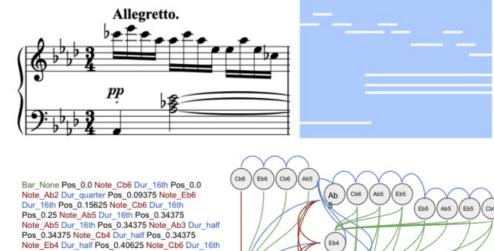
Huan Zhang Emmanouil Karystinaios Simon Dixon Gerhard Widmer Carlos Eduardo Cancino-Chacón

{huan.zhang, s.e.dixon}@qmul.ac.uk

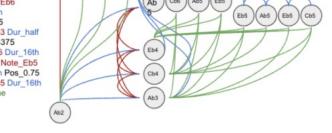
{emmanouil.karystinaios, gerhard.widmer, carlos_eduardo.cancino_chacon}@jku.at

Contributions

- We investigate the performance and complexity of matrix, sequence and graph input representations, and their corresponding neural architectures (CNN, Transformer, GCN)
- We compare the impact that the different information contained in symbolic scores and performances has on different piece-level classification tasks.
- We introduce a new graph representation for symbolic </> performances and explore the capability of graph representations in classification tasks.



Pos_0.5 Note_Ab5 Dur_16th Pos_0.59375 Note_Eb5 Dur_16th Pos_0.65625 Note_Eb5 Dur_16th Pos_0.75 Note_Ab5 Dur_16th Pos_0.84375 Note_Eb5 Dur_16th Pos_0.90625 Note_Cb5 Dur_16th Bar_None



Excerpt of Schubert's Impromptu Op. 90 No.4 and its input visualizations (from left to right): generic matrix, sequence (REMI-like) and graph.

3. Results

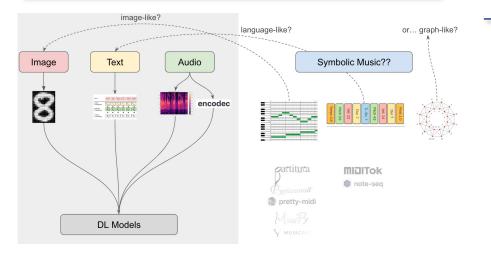
Composer classification results for all representations, on all target subsets of our datasets on the composer classification task using only basic level features.

		ASAP-performance		ASAP-score		ATEPP-performance		ATEPP-score	
		ACC	F1	ACC	F1	ACC	F1	ACC	F1
Mat	rix								
Resl	Chnl								
400	On+Fm	0.59 ± 0.04	0.18 ± 0.02	0.59 ± 0.03	0.18 ± 0.01	0.24±0.05	0.20 ± 0.04	0.25 ± 0.02	0.16±0.03
600	On+Fm	0.62 ± 0.06	0.21±0.03	0.61±0.07	0.19 ± 0.02	0.28 ± 0.01	0.22±0.03	0.24 ± 0.02	0.16±0.04
800	Fm	0.62 ± 0.04	0.21 ± 0.02	0.58 ± 0.06	0.18±0.03	0.22±0.03	0.17±0.01	0.22 ± 0.02	0.18±0.03
800	On+Fm	0.63±0.04	0.20 ± 0.01	0.57 ± 0.04	0.18±0.03	0.28 ± 0.02	0.22 ± 0.01	0.22 ± 0.04	0.14±0.02
Sequ	ence								
Tokn	BPE								
MidiLike	×	0.53 ± 0.05	0.16 ± 0.02	N/A	N/A	0.18 ± 0.04	0.10 ± 0.02	N/A	N/A
REMI	×	0.51 ± 0.04	0.15 ± 0.02	0.43 ± 0.04	0.14 ± 0.01	0.23±0.04	0.10 ± 0.02	0.23 ± 0.04	0.13±0.02
СР	×	0.48 ± 0.02	0.09 ± 0.05	0.45 ± 0.05	0.10 ± 0.01	0.11±0.02	0.09 ± 0.01	0.17±0.06	0.11±0.04
MidiLike	4	0.52 ± 0.04	0.15 ± 0.02	N/A	N/A	0.17±0.03	0.12 ± 0.01	N/A	N/A
REMI	4	0.51 ± 0.02	0.15 ± 0.01	0.43±0.03	0.13±0.01	0.21±0.01	0.13±0.03	0.23±0.03	0.13±0.01
Gra	ph								
Bi-dir	Multi-rel								
×	×	0.56 ± 0.01	0.17 ± 0.02	0.51 ± 0.05	0.16 ± 0.02	0.22 ± 0.02	0.10±0.03	0.23±0.03	0.21±0.05
×	\checkmark	0.58±0.03	0.19 ± 0.01	0.54 ± 0.05	0.17±0.02	0.27±0.03	0.13 ± 0.02	0.29±0.10	0.18±0.06
\checkmark	\checkmark	0.62±0.02	0.21±0.01	0.50 ± 0.04	0.17 ± 0.01	0.23 ± 0.04	0.16±0.03	0.27 ± 0.06	0.22±0.03

4. Conclusion & Takeaways

- Performance:
 - Matrix ≈ Graph > Sequence, but overall achieves similar level of acc
 - Matrix approach trains more robustly, while graph approach the least
 - Graph structures benefit the most from voicing information

1. Motivation



2. Methodology

- Representation configuration:
 - Matrix:
 - Resolution and channels
 - Sequence:
 - Encodings
 - Byte pair encoding
 - Graph:
 - Bi-directions
 - Edge relationships

- Information level:
 - Basic: Pitch, onset, duration
 - Advanced: Voicing, markings (score), velocity (perf)
- Architecture •
 - Frontend:
 - Matrix ResNet family
 - Sequence Transformer
 - Graph GCN from GraphSAGE blocks
 - Backend: Multihead attention block
- Dataset: ATEPP / ASAP ٠
 - Performance MIDI & Score MusicXML
 - Classification tasks: Composer, Performer, Difficulty

• Model complexity:

- Sequence (12.8M) >> Matrix (4.3M) > Graph (1.3M) (Minimal model that achieve the same result)
- Transformer vs. GNN: Are we learning the same set of musical edges?
 - Not entirely, but we observed some structural similarities
- The Album Effect:
 - Multiple interpretations of the same composition may cause information leakage. Happens in existing literature already! (~30% acc boost)

https://github.com/anusfoil/SymRep

This work was supported UKRI Centre for Doctoral Training in Artificial Intelligence and Music, funded by UK Research and Innovation [grant number EP/S022694/1], as well as European Research Council (ERC) under the EU's Horizon 2020 research and innovation programme, grant agreement No. 101019375 (Whither Music?).

OHANNES KEPLER UNIVERSITÄT LINZ

