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Data Pre-processing
DiMCAT is able to analyze heterogeneous symbolic music corpora by con-

verting them into five dataframes, one per Facet:

events: notes and rests (incl. ties, tremolos, grace notes, etc.);

control events: performance details (e.g., dynamics, lyrics, articulation);

structure: time line and flow control (e.g., time signatures, repeat signs);

annotations: analytical labels (e.g., chord labels, algorithmic outputs);

metadata: piece information (e.g., creation date, composer, score origin).

Frictionless Serialization
All DiMCAT objects can be serialized to JSON. For all data objects,

this is achieved using the Frictionless standard [1].

• Each dataframe in DiMCAT is called a Resource and stored as tab-

separated values (TSV) together with a JSON descriptor.

• Multiple resources are stored together as a Package, that is, a

JSON descriptor and a ZIP file containing compressed TSVs.

• The JSON descriptors fully specify the column schemas. This

makes the Resources interoperable and allows for lazy loading.

Basic Principle
Data objects are processed by PipelineStep objects, yielding new, pro-

cessed Data objects.

• The DiMCAT workflow starts with initializing a Dataset object:

◦ either an empty one, loading a Package into the Inputs Catalog;

◦ or one that had been serialized together with its Outputs.
• Having copied a given Dataset object, a PipelineStep may

◦ add Feature or Result resources to the Outputs;
◦ perform transformations on Resources added by previous Steps.

Score Formats

MuseScore
Capella
MEI
MIDI
MuseData
musicXML
**kern
LilyPond
NoteWorthy
TinyNotation

Other Formats

Humdrum
RomanText
metadata.tsv
annotations.csv
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Extracting and Visualizing Features
DiMCAT extracts Feature resources in declarative fashion. A PipelineStep or a user specify the required

feature and the Dataset object extracts it or returns a previously cached resource. In the remaining exam-

ples, the corresponding FeatureExtractor steps are not explicitly shown in the pipelines.
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Fig. 1: Pitch-class distribution over my_corpora in quarter notes, generated

by a plotting method of the extracted Notes feature.

Slicing
Slicer objects segment Resources according to the boundaries gained from one particular Feature. In a

SlicedDataset, these segments, rather than entire pieces, serve as the basic unit that Analyzer objects

operate on. Slicing a Feature based on another onemay enable the use of additionalGroupers, for instance,

when Notes are sliced based on HarmonyLabels.
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Fig. 3: This truncated heatmap shows

the relative frequencies (in %) of transi-

tions between the ten most frequent lo-

cal keys in my_corpora. Keys are given

as Roman numerals pertaining to a major

scale. Percentages following y-axis labels

correspond to the proportion of key seg-

ments in the given key. Black bars rep-

resent the relative entropy of each (com-

plete) row.

Grouping
Applying a Grouper to a dataset is tantamount to binning chunks of data based on a membership crite-

rion. Depending on the type of Grouper, it may transform all Resource objects in the Outputs (e.g., the

CorpusGrouper) or request a specific Feature (e.g., the ModeGrouper).
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Fig. 3: Bar chart showing fractions of corpus duration with local keys in

major (blue) vs. minor (red), produced by plotting Keys after applying two

Groupers.

Analyzing & Transforming
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one or several Features and add the resulting Resource

(Feature or Result) to the Outputs. Analyzers my depend on

prior application of other PipelineSteps.
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Fig. 4: Sankey plot displaying the transition masses between chordal roots

of all 4-grams terminating on a Perfect Authentic Cadence.

Statement of Need
As corpora of digital musical scores continue to grow, we introduce the Digi-

tal Musicology Corpus Analysis Toolkit (DiMCAT), a Python library for processing
large corpora of digitally encoded scores and annotations. Equally aimed at

music-analytical corpus studies, MIR, and machine-learning research, the li-

brary performs common data transformations and analyses using dataframes.

In comparison to other libraries that achieve similar goals [3–6], DiMCAT spe-

cializes in flexibly scaling the operational level (whole datasets, pieces, seg-

ments) and offering appropriate visualizations. The pipeline API design en-

ables the flexible combination of commonplace operations (slicing, grouping,

analyzing) and facilitates the communication of reproducible research results.

It prioritizes computational speed, extensibility, and ease of use, thus aiming

to cater to machine-learning practitioners and musicologists alike.
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The Reproducible Slice-Group-Analyze Pipeline
Fig. 5: Transitions between the 20 most frequent chordal bass notes (as scale degrees) for all local key segments in major (left, blue) and in minor (right, red).
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SlicedGroupedAnalyzedDataset (simplified)

=========================================

{

  "inputs": {

    "packages": {

      "dcml_corpora": [

        "MuseScoreFacetName.MuseScoreMeasures",

        "MuseScoreFacetName.MuseScoreNotes",

        "MuseScoreFacetName.MuseScoreHarmonies",

        "FeatureName.Metadata"

      ]

    }

  },

  "outputs": {

    "packages": {

      "features": [

        "FeatureName.KeyAnnotations",

        "FeatureName.HarmonyLabels"

      ],

      "results": [

        "ResultName.Bigrams"

      ]

    }

  },

  "pipeline": [

    "KeySlicer",

    "ModeGrouper",

    "BigramAnalyzer"

  ]

}

pipeline.json

{
  "dtype": "Pipeline",
  "steps": [
    {
      "dtype": "KeySlicer"
    },
    {
      "dtype": "ModeGrouper"
    },
    {
      "dtype": "BigramAnalyzer",
      "features": [
        {
          "dtype": "BassNotes",
          "format": "DEGREE"
        }
      ]
    }
  ]
}

To reproduce:
  dataset:  dcml_corpora @ v2.0
  pipeline: pipeline.json

Thanks to its comprehensive serialization capabilities, DiMCAT makes it easy

to document and communicate reproducible results. A Dataset object can

be fully serialized including its zipped outputs (see the simplified JSON struc-

ture on the left), which is handy for continuing earlierworkwithout having to

re-do expensive computation. However, the processed data (Outputs) and
corresponding figures may be accurately re-generated from (1) the version

of the dataset and (2) the specification of the pipeline, including all non-

default parameter values. This way, even complex compute pipelines can

be documented, shared, and reproduced in parsimonious fashion.

from dimcat import Dataset, deserialize_json_file

input = "dcml_corpora.datapackage.json"

dataset = Dataset.from_package(input)

pipeline = deserialize_json_file("pipeline.json")

processed_dataset = pipeline.process(dataset)

bigrams = processed_dataset.get_result()

bigrams.plot()
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