
Introducing the Digital Musicology Corpus Analysis Toolkit
for processing and analyzing notated music on a very large scale

Johannes Hentschel1, Yannis Rammos1, AndrewMcLeod2, Martin Rohrmeier1

� johannes.hentschel@epfl.ch 1 Digital and Cognitive Musicology Lab, École Polytechnique Fédérale de Lausanne, Switzerland 2 Fraunhofer IDMT, Ilmenau, Germany

Data Pre-processing
DiMCAT is able to analyze heterogeneous symbolic music corpora by con-

verting them into five dataframes, one per Facet:

events: notes and rests (incl. ties, tremolos, grace notes, etc.);

control events: performance details (e.g., dynamics, lyrics, articulation);

structure: time line and flow control (e.g., time signatures, repeat signs);

annotations: analytical labels (e.g., chord labels, algorithmic outputs);

metadata: piece information (e.g., creation date, composer, score origin).

Frictionless Serialization
All DiMCAT objects can be serialized to JSON. For all data objects,

this is achieved using the Frictionless standard [1].

• Each dataframe in DiMCAT is called a Resource and stored as tab-

separated values (TSV) together with a JSON descriptor.

• Multiple resources are stored together as a Package, that is, a

JSON descriptor and a ZIP file containing compressed TSVs.

• The JSON descriptors fully specify the column schemas. This

makes the Resources interoperable and allows for lazy loading.

Basic Principle
Data objects are processed by PipelineStep objects, yielding new, pro-

cessed Data objects.

• The DiMCAT workflow starts with initializing a Dataset object:

◦ either an empty one, loading a Package into the Inputs Catalog;

◦ or one that had been serialized together with its Outputs.
• Having copied a given Dataset object, a PipelineStep may

◦ add Feature or Result resources to the Outputs;
◦ perform transformations on Resources added by previous Steps.

Score Formats

MuseScore
Capella
MEI
MIDI
MuseData
musicXML
**kern
LilyPond
NoteWorthy
TinyNotation

Other Formats

Humdrum
RomanText
metadata.tsv
annotations.csv

Data Processing in DiMCAT

Dataset

Pi
pe

lin
e

Step Step Step Step

Inputs

my_corpora

Facet

Facet

Outputs

features

Feature

results

Result

DiMCAT Loaders

Score parsers

ms3 [2]

music21 [3]

Package
Events Controls Structure Annotations

Metadata

Heterogeneous
Symbolic Data

Legend
Catalog

Package

Resource

Pi
pe

lin
e

 PipelineStep

Slicer

Grouper

Analyzer

Pi
pe

lin
eS

te
ps

D

at
a

Data before

Dataset

Data after

Processed Dataset

Pipeline or PipelineStep

Pi
pe

lin
e

Step Step

Step

Extracting and Visualizing Features
DiMCAT extracts Feature resources in declarative fashion. A PipelineStep or a user specify the required

feature and the Dataset object extracts it or returns a previously cached resource. In the remaining exam-

ples, the corresponding FeatureExtractor steps are not explicitly shown in the pipelines.

Dataset

Inputs

my_corpora

Outputs

features

Notes

Pi
pe

lin
e

 FeatureExtractor
Notes

key1 value1

key2 value2
()

C G D A E B F# C# G# D# A# E# B# F## C## G## D##Abb Ebb Bbb Fb Cb Gb Db Ab Eb Bb F
0

10k

20k

30k

40k

50k

60k

Tonal pitch class

D
ur

at
io

n
in

 ♩

Fig. 1: Pitch-class distribution over my_corpora in quarter notes, generated

by a plotting method of the extracted Notes feature.

Slicing
Slicer objects segment Resources according to the boundaries gained from one particular Feature. In a

SlicedDataset, these segments, rather than entire pieces, serve as the basic unit that Analyzer objects

operate on. Slicing a Feature based on another onemay enable the use of additionalGroupers, for instance,

when Notes are sliced based on HarmonyLabels.

SlicedDataset

Inputs

my_corpora

Outputs

features

Sliced Keys

Pi
pe

lin
e

KeySlicer

I (29.4)

i (19.9)

V (9.4)

bIII (7.1)

v (5.2)

vi (5.1)

iv (3.5)

IV (3.4)

bVI (2.9)

iii (2.2)

0.54

0.5

0.35

0.41

0.49

0.3

0.47

0.37

0.47

0.46

I i V bIII v vi iv IV bVI iii

0.6 10
.5

35
.5 3.4 1.5 16
.9 0.7 10
.8 2.7 5.2

19
.8 0.4 2.0 32
.2

17
.6 0.2 7.7 0.4 9.3 0.6

68
.4 4.6 0.3 3.4 5.6 4.3 1.2 0.6 2.2

8.0 56
.2 1.6 0.4 8.8 11
.6 0.8 2.4 0.4

3.9 45
.6 7.8 13
.3 3.9 8.9 3.9 2.2 1.1

69
.1 0.6 6.9 2.3 5.7 4.0

5.0 46
.3 0.8 9.1 9.9 4.1 7.4 0.8

63
.7 5.3 1.8 0.9 3.5 4.4 4.4 0.9 0.9

17
.0

45
.0 2.0 4.0 1.0 10
.0 1.0

50
.0 2.7 8.1 1.4 9.5 1.4 8.1

Fig. 3: This truncated heatmap shows

the relative frequencies (in %) of transi-

tions between the ten most frequent lo-

cal keys in my_corpora. Keys are given

as Roman numerals pertaining to a major

scale. Percentages following y-axis labels

correspond to the proportion of key seg-

ments in the given key. Black bars rep-

resent the relative entropy of each (com-

plete) row.

Grouping
Applying a Grouper to a dataset is tantamount to binning chunks of data based on a membership crite-

rion. Depending on the type of Grouper, it may transform all Resource objects in the Outputs (e.g., the

CorpusGrouper) or request a specific Feature (e.g., the ModeGrouper).

GroupedDataset

Inputs

my_corpora

Outputs

features

Grouped Keys

Pi
pe

lin
e

ModeGrouperCorpusGrouper

70.1 %

66.3 %

58.7 %53.7 %

36.1 %
66.9 %

60.5 %
70.4 %

38.7 %

81.9 %

74.9 %
60.9 %

29.9 %

33.7 %

41.3 %
46.3 %

63.9 %33.1 %

39.5 %
29.6 %

61.3 %

18.1 %

25.1 %
39.1 %

Corelli Trio Sonatas

Mozart Piano Sonatas

Beethoven Sonatas

Beethoven String Quartets

Chopin Mazurkas

R Schumann Kinderszenen

Liszt Années

Tchaikovsky Seasons

Dvořák Silhouettes

Grieg Lyric Pieces

Debussy Suite Bergamasque

Medtner Tales

0

10k

20k

30k

40k

50k
mode

major
minor

Key segments grouped by corpus

du
ra

tio
n

in
 𝅘𝅥

Fig. 3: Bar chart showing fractions of corpus duration with local keys in

major (blue) vs. minor (red), produced by plotting Keys after applying two

Groupers.

Analyzing & Transforming

AnalyzedDataset

Inputs

my_corpora

Pi
pe
lin
e

CadenceStages

Outputs

results

CadenceStages

features

HarmonyLabels

Cadences

Analyzer objects perform an analysis or transformation on

one or several Features and add the resulting Resource

(Feature or Result) to the Outputs. Analyzers my depend on

prior application of other PipelineSteps.

IV

ii

I

vii

i

i

VI

IV

I

ii

i
#vii

V

iv
vii

V

#vii

vii

vi

v

vi

IV

iii

iv

#vii

III

VI

#vi

bII

bV

bIII

v

bII

III
bVI

#iv

iii

v

#vi

ii

bI

VII

bVI

I

bVII

bVII

VII

III

Fig. 4: Sankey plot displaying the transition masses between chordal roots

of all 4-grams terminating on a Perfect Authentic Cadence.

Statement of Need
As corpora of digital musical scores continue to grow, we introduce the Digi-

tal Musicology Corpus Analysis Toolkit (DiMCAT), a Python library for processing
large corpora of digitally encoded scores and annotations. Equally aimed at

music-analytical corpus studies, MIR, and machine-learning research, the li-

brary performs common data transformations and analyses using dataframes.

In comparison to other libraries that achieve similar goals [3–6], DiMCAT spe-

cializes in flexibly scaling the operational level (whole datasets, pieces, seg-

ments) and offering appropriate visualizations. The pipeline API design en-

ables the flexible combination of commonplace operations (slicing, grouping,

analyzing) and facilitates the communication of reproducible research results.

It prioritizes computational speed, extensibility, and ease of use, thus aiming

to cater to machine-learning practitioners and musicologists alike.

References
[1] D. Fowler, J. Barratt, and P. Walsh, “Frictionless data: Making research data quality visible,” International Journal of Digital Curation,

vol. 12, no. 2, pp. 274–285, May 13, 2018, issn: 1746-8256. doi: 10.2218/ijdc.v12i2.577. [Online]. Available: http://www.
ijdc.net/article/view/577 (visited on 07/10/2023).

[2] J. Hentschel and M. Rohrmeier, “ms3: A parser for MuseScore files, serving as data factory for annotated music corpora,” Journal of
Open Source Software, vol. 8, no. 88, p. 5195, 2023. doi: 10.21105/joss.05195.

[3] M. S. Cuthbert and C. Ariza, “Music21: A toolkit for computer-aided musicology and symbolic music data,” in Proceedings of the
11th International Society for Music Information Retrieval Conference (ISMIR), 2010, pp. 637–642, isbn: 978-90-393-5381-3.

[4] N. Condit-Schultz and C. Arthur, “humdrumR: A new take on an old approach to computational musicology,” in Proceedings of the
20th International Society for Music Information Retrieval Conference (ISMIR), Delft, 2019.

[5] C. Antila and J. Cumming, “The VIS framework. Analyzing counterpoint in large datasets,” in Proceedings of the 15th International
Society for Music Information Retrieval Conference (ISMIR), 2014.

[6] A. Llorens, F. Simonetta, M. Serrano, and Á. Torrente, “Musif: A Python package for symbolic music feature extraction,” in Sound
and Music Computing Conference (SMC), arXiv, Jul. 3, 2023. doi: 10.48550/arXiv.2307.01120. arXiv: 2307.01120 [cs, eess].
[Online]. Available: http://arxiv.org/abs/2307.01120 (visited on 07/11/2023).

Acknowledgments

This research was supported by the Swiss National Science Foundation within the
project “Distant Listening – The Development of Harmony over Three Centuries
(1700–2000)” (Grant no. 182811). This project was being conducted at the Latour
Chair in Digital and Cognitive Musicology, generously funded by Mr. Claude Latour.

The Reproducible Slice-Group-Analyze Pipeline
Fig. 5: Transitions between the 20 most frequent chordal bass notes (as scale degrees) for all local key segments in major (left, blue) and in minor (right, red).

SlicedGroupedAnalyzedDataset

Inputs

dcml_corpora

Outputs

features

Keys

BassNotes

Pi
pe

lin
e

 KeySlicer BigramAnalyzerModeGrouper

results

Bigrams

Events

Control Events

Measures

Annotations

5 (23.1)
1 (21.7)
4 (11.6)

3 (9.7)
2 (9.3)
6 (7.4)
7 (7.0)

#4 (2.6)
b6 (1.9)
b7 (1.4)
b3 (1.2)
#1 (0.8)
#5 (0.8)
b2 (0.7)
#2 (0.3)
#6 (0.2)
b5 (0.1)
b4 (0.1)
b1 (0.0)

bb3 (0.0)

0.54

0.64

0.6

0.61

0.6

0.66

0.54

0.4

0.58

0.63

0.68

0.4

0.4

0.69

0.39

0.41

0.69

0.56

0.65

0.59

5 1 4 3 2 6 7 #4 b6 b7 b3 #1 #5 b2 #2 #6 b5 b4 b1 bb
3

31
.6

34
.7 7.8 5.5 3.9 6.0 3.2 2.1 1.5 0.4 0.5 0.3 1.0 0.0 0.1 0.0 0.1

18
.9

20
.4

12
.4 7.5 9.9 6.6 11
.6 0.8 0.8 1.7 0.5 0.9 0.6 0.3 0.1 0.0 0.0 0.0 0.0

27
.0 9.5 15
.2

25
.1 8.3 2.9 2.7 4.8 0.8 0.7 0.7 0.6 0.2 0.1 0.2 0.1 0.1 0.0

9.1 12
.7

31
.1 9.8 17
.3 7.8 4.6 1.3 0.3 0.6 1.2 0.9 0.3 0.2 1.0 0.0 0.0 0.0 0.0

25
.0

23
.4 5.2 15
.1

14
.1 2.7 8.3 0.5 0.5 0.3 0.8 1.4 0.4 0.3 0.5 0.1 0.0

23
.6 5.5 12
.5 6.5 11
.7

14
.8

13
.1 2.6 3.0 1.5 0.2 0.6 1.7 0.1 0.1 0.4 0.0 0.0

12
.6

44
.0 2.8 5.6 4.4 12
.2

10
.9 0.6 0.3 2.3 0.3 1.0 0.8 0.1 0.2 0.0

66
.7 1.2 8.4 2.9 4.1 1.7 3.1 6.9 0.7 0.1 0.4 0.2 1.4 0.1 0.4 0.1

44
.6 8.4 8.1 2.0 2.3 3.2 2.8 2.0 15
.7 2.7 2.5 0.2 0.2 2.9 0.1 0.9 0.1

5.0 6.0 5.1 5.0 2.9 39
.4 4.8 1.3 7.8 12
.9 4.5 0.5 0.2 1.5 0.2 0.5 0.2

12
.4

11
.2 6.7 3.9 23
.7 2.6 3.3 1.1 8.6 2.6 15
.9 0.2 1.0 0.8 0.3 0.5 0.5 0.3

3.4 3.7 4.0 3.2 66
.3 5.2 1.7 1.7 0.2 0.2 8.4 0.2 0.2

6.6 2.6 2.1 4.7 0.9 67
.1 2.1 0.5 0.3 0.2 1.0 7.8 0.2 0.2 0.7 0.2 0.2 0.2

6.2 32
.4 6.7 2.9 5.2 2.4 1.0 1.9 9.0 6.7 2.9 1.0 0.5 11
.9 2.9 1.0 1.4

2.1 3.1 2.1 69
.8 4.7 4.7 2.1 1.0 1.0 0.5 1.0 6.2

3.9 1.3 1.3 6.6 52
.6 2.6 1.3 2.6 27
.6

9.1 1.5 36
.4 4.5 3.0 3.0 6.1 7.6 6.1 1.5 4.5 6.1 3.0 4.5

7.4 25
.9 7.4 3.7 33
.3 3.7 3.7 11
.1 3.7

8.3 4.2 4.2 4.2 16
.7

12
.5 8.3 4.2 16
.7

20
.8

20
.0 6.7 6.7 20
.0

20
.0

13
.3 6.7

5 (23.1)
1 (21.0)
4 (10.8)

3 (8.6)
6 (8.4)
2 (7.4)

#7 (5.2)
7 (4.1)

#6 (3.7)
b2 (1.7)
#4 (1.5)
#3 (1.5)
b5 (1.4)
b1 (0.4)
#1 (0.2)
b4 (0.2)
b6 (0.1)
#2 (0.1)
b7 (0.1)
#5 (0.1)

0.54

0.66

0.63

0.65

0.58

0.59

0.48

0.63

0.67

0.71

0.43

0.51

0.66

0.65

0.51

0.62

0.59

0.51

0.33

0.6

5 1 4 3 6 2 #7 7 #6 b2 #4#3 b5 b1 #1 b4 b6 #2 b7 #5

31
.9

31
.8 7.9 5.3 9.0 3.1 2.3 0.7 1.2 0.5 2.0 0.6 0.3 0.0 0.0 0.0 0.2 0.1 0.1

18
.3

20
.2

10
.9 6.7 5.7 8.0 9.5 5.6 0.9 1.7 1.0 0.8 0.1 0.4 0.3 0.0 0.0 0.0 0.0 0.0

29
.3 9.9 16
.5

17
.2 4.1 4.9 2.7 4.6 0.4 1.4 3.4 3.0 0.6 0.1 0.0 0.1 0.0 0.0 0.0

9.9 12
.7

20
.5

11
.7 6.6 21
.2 4.1 2.7 1.4 2.3 0.8 2.6 0.6 0.1 0.0 0.3 0.0

39
.1 5.5 11
.7 4.5 20
.0 3.5 1.6 4.4 1.6 2.3 1.5 1.0 0.7 0.2 0.0 0.2 0.1 0.1 0.1

20
.5

24
.8 3.5 17
.6 2.0 16
.6 6.7 1.5 1.3 1.5 0.1 1.0 0.1 1.0 0.1 0.1

10
.5

55
.0 3.0 2.3 3.4 5.8 9.4 4.8 2.0 0.6 0.5 0.6 0.1 0.1 0.0 0.0 0.0

6.1 7.8 4.6 15
.8

23
.9 2.1 1.7 23
.4 8.5 1.5 0.3 0.7 0.2 0.7 0.2 0.1 0.9

17
.6 1.8 3.7 2.2 17
.4 9.9 18
.0 8.5 12
.3 0.3 1.4 0.6 1.2 0.6 0.6 0.2 0.5

11
.0

25
.8 6.2 8.6 12
.1 4.9 4.6 5.1 11
.0 0.5 2.4 1.7 1.7 0.2 0.3 0.2 0.2 0.5 0.2

60
.8 4.4 9.0 1.5 2.7 5.4 1.2 0.3 1.5 0.7 9.1 0.3 0.2 0.2 0.2

5.8 6.5 52
.9 5.8 2.4 4.5 1.9 0.4 1.7 2.2 0.4 11
.8 0.2 0.6 0.2

6.6 5.9 38
.8 6.6 7.2 0.7 0.7 5.3 2.6 5.3 1.3 11
.2 0.7 2.6 0.7 1.3

1.1 5.7 6.9 8.0 8.0 1.1 11
.5

34
.5 1.1 3.4 4.6 6.9 3.4

3.8 11
.4 2.5 2.5 1.3 51
.9 1.3 1.3 1.3 3.8 12
.7 1.3 1.3 1.3

15
.1 1.9 9.4 35
.8 5.7 1.9 1.9 5.7 5.7 1.9 1.9 11
.3

30
.8 7.7 5.1 5.1 7.7 2.6 2.6 10
.3

17
.9

5.6 11
.1 5.6 5.6 2.8 2.8 11
.1

47
.2

3.0 72
.7 3.0 3.0 6.1 3.0 6.1

12
.5

12
.5 6.2 3.1 25
.0 3.1 18
.8

SlicedGroupedAnalyzedDataset (simplified)

===

{

 "inputs": {

 "packages": {

 "dcml_corpora": [

 "MuseScoreFacetName.MuseScoreMeasures",

 "MuseScoreFacetName.MuseScoreNotes",

 "MuseScoreFacetName.MuseScoreHarmonies",

 "FeatureName.Metadata"

]

 }

 },

 "outputs": {

 "packages": {

 "features": [

 "FeatureName.KeyAnnotations",

 "FeatureName.HarmonyLabels"

],

 "results": [

 "ResultName.Bigrams"

]

 }

 },

 "pipeline": [

 "KeySlicer",

 "ModeGrouper",

 "BigramAnalyzer"

]

}

pipeline.json

{
 "dtype": "Pipeline",
 "steps": [
 {
 "dtype": "KeySlicer"
 },
 {
 "dtype": "ModeGrouper"
 },
 {
 "dtype": "BigramAnalyzer",
 "features": [
 {
 "dtype": "BassNotes",
 "format": "DEGREE"
 }
]
 }
]
}

To reproduce:
 dataset: dcml_corpora @ v2.0
 pipeline: pipeline.json

Thanks to its comprehensive serialization capabilities, DiMCAT makes it easy

to document and communicate reproducible results. A Dataset object can

be fully serialized including its zipped outputs (see the simplified JSON struc-

ture on the left), which is handy for continuing earlierworkwithout having to

re-do expensive computation. However, the processed data (Outputs) and
corresponding figures may be accurately re-generated from (1) the version

of the dataset and (2) the specification of the pipeline, including all non-

default parameter values. This way, even complex compute pipelines can

be documented, shared, and reproduced in parsimonious fashion.

from dimcat import Dataset, deserialize_json_file

input = "dcml_corpora.datapackage.json"

dataset = Dataset.from_package(input)

pipeline = deserialize_json_file("pipeline.json")

processed_dataset = pipeline.process(dataset)

bigrams = processed_dataset.get_result()

bigrams.plot()

https://frictionlessdata.io/
https://doi.org/10.2218/ijdc.v12i2.577
http://www.ijdc.net/article/view/577
http://www.ijdc.net/article/view/577
https://doi.org/10.21105/joss.05195
https://doi.org/10.48550/arXiv.2307.01120
https://arxiv.org/abs/2307.01120
http://arxiv.org/abs/2307.01120

	References

