A FEW-SHOT NEURAL APPROACH FOR LAYOUT ANALYSIS OF MUSIC SCORE IMAGES

Francisco J. Castellanos¹ - AntonioJavier Gallego¹ - Ichiro Fujinaga²

¹ University Institute for Computing Research, University of Alicante, Spain ² Schulich School of Music, McGill University, Montreal, Canada

{fcastellanos, jgallego}@dlsi.ua.es, ichiro.fujinaga@mcgill.ca

1. INTRODUCTION

- Layout analysis is a common step within the traditional Optical Music Recognition (OMR) workflow.
- State-of-the-art methods require a great amount of annotated data obtained by hand, being a high-cost and error-prone task.
- Proposal: to integrate a few-shot learning strategy.

2. CURRENT STATE

- **SAE-based framework**: it uses a series of supervised U-net networks, the so-called *Selectional Auto-Encoders* (**SAE**).
 - It requires labeled data for each new manuscript.
- Few-shot learning: strategy in which scarce annotated data is employed to learn the task at issue.

3. FEW-SHOT LEARNING FOR LAYOUT ANALYSIS

- Our approach uses partial annotations and extracts random patch samples around the available annotations.
- Our model **includes a masking layer** to ignore those pixels not annotated within the random patch samples employed for training.

Step I: manual partial annotations

Step II: random patch-sample extraction

4. RESULTS

5. QUALITATIVE EVALUATION

6. CONCLUSIONS

- Our approach is a potential solution for few-shot scenarios.
- It enables reducing ground-truth requirements.
- Annotating 32 patch samples in one page yields competitive results $(F_1^M = 65.5\%)$ with respect to annotating 4 full pages $(F_1^M = 72\%)$.
- Transfer, incremental, and active learning may be explored.

