Self-Refining of Pseudo Labels for Music Source Separation with Noisy Labeled Data

Junghyun Koo*, Yunkee Chae*, Chang-Bin Jeon, Kyogu Lee *Music and Audio Research Group, Seoul National University, Seoul, Republic of Korea* {dg22302, yunkimo95, vinyne, kglee}@snu.ac.kr

- Obtaining clean and accurately labeled individual instrument tracks for training Music Source Separation (MSS) models is challenging.
- We propose a technique for refining mislabeled instrument tracks in partially noisy-labeled datasets.
- In classification task, our self-training approach results in only a 1% accuracy degradation for multi-label instrument recognition compared to clean-labeled datasets.
- Notably, MSS models trained on self-refined datasets outperform models refined with a classifier trained on

- Multi-label instrument classifier is trained with mixtures that are synthesized by randomly selecting each stem from the noisy labeled dataset.
- Similar yet different from self-training, our approach learns directly from noisy labeled data and re-labels the training data.
 We call this procedure self-refining.
- Random mixing: not only creates various multi-labeled mixtures, but also brings the chance to generate correct pseudo

clean labels.

label from mislabeled stems.

• Additional data augmentation: dynamic range compression, algorithmic reverb, stereo imaging, loudness manipulation.

Music Source Separation with Refined Dataset

- Our refined dataset contains sources labeled with multiple stems, which is unsuitable for ordinary MSS methods.
- First, we determine whether to include the multi-stem source for each input mixture sample with some probability.
- If we decide not to include the multi-labeled source, we can train the MSS model in a conventional manner.
- Otherwise, we select a multi-labeled source and choose the remaining stems from a pool of single-labeled sources.
 - Ex) select bass+drums → select remaining sources (vocals, others) from single-labeled sources
- After inference, we add the estimated stems corresponding to the multi-stem source of the input mixture.

Results – Instrument Recognition

	Training Data	Accuracy / F1 Score Precision / Recall						
Label Type								
		vocals	bass	drums	other	avg		
Single-Label	clean	97.8% / 0.947	94.4% / 0.891	95.1% / 0.914	93.2% / 0.880	95.1% / 0.906		
		0.91 / 0.98	0.84 / 0.94	0.85 / 0.98	0.90 / 0.85	0.87 / 0.93		
	noisy	93.6%/0.860	<u>90.0%70.821</u>	93.7%/0.893	<u>92.6%/0.865</u>	92.5%70.860		
		0.76 / 0.97	0.73 / 0.93	0.81 / 0.98	0.92 / 0.81	0.80 / 0.92		
	refined	96.1% / 0.911	89.6% / 0.818	93.1% / 0.884	92.3% / 0.862	92.8% / 0.866		
		0.84 / 0.98	0.71 / 0.96	0.79 / 0.98	0.90 / 0.82	0.80 / 0.93		
Multi-Label	clean	92.4% / 0.929	89.6% / 0.905	90.5% / 0.913	88.1% / 0.878	90.2% / 0.907		
		0.92 / 0.93	0.89 / 0.92	0.87 / 0.95	0.90 / 0.85	0.90 / 0.91		
	noisy	87.9%/0.895	87.5%70.888	87.7%/0.891	⁻ 87.3%/0.872 ⁻	87.6%/0.887		
		0.83 / 0.96	0.86 / 0.93	0.82 / 0.96	0.88 / 0.87	0.85 / 0.93		
	refined	91.9% / 0.928	87.8% / 0.894	89.6% / 0.906	87.4% / 0.874	89.2% / 0.901		
		0.88 / 0.97	0.84 / 0.95	0.85 / 0.96	0.88 / 0.87	0.86 / 0.94		

Table 1. Instrument recognition performance on single and multi-label instrument classifiers trained with different datasets. The training data of *clean*, *noisy*, and *refined* each represents the training subset of MUSDB18, MDX2023, and MDX2023 refined with MDX2022 W

- For single-labeled data, the classifier achieves the highest average performance on the *clean* dataset.
- It can be considered an upper bound for the performance, as *clean* dataset does not contain noisy labels.
- The average performance achieves better performance when trained on *refined* dataset than noisy dataset.

For multi-labeled data, the *refined* dataset achieves superior performance comparable to the *clean* dataset.

Contrary to the evaluation with single-labeled data, the *refined* dataset generally demonstrates superior performance across all metrics in comparison to the *noisy* dataset.

Experimental Setups

- Dataset
 - Dataset w/ label noise: MDX2023 Challenge track1 dataset
 - Dataset w/o label noise (clean):
 - MUSDB18 dataset
 - Multi-label classifier
 - ConvNext's tiny version
 - Thresholds = 0.9
- MSS models
 - Hybrid Demucs
 - CrossNet-Open-Unmix

 Notably, the recall values are observed to be even higher than those of the *clean* dataset.

Results – Music Source Separation

Notwork	Training	SDR [dB]					
Network	Data	vocals	bass	drums	other	avg	
	clean	5.92	6.16	5.58	4.43	5.52	
Damuas	noisy	3.37	1.92	0.70	$\overline{0.86}$	$\bar{1}.\bar{7}1$	
1291	w/ Ψ_{clean}	5.31	5.12	1.32	2.16	3.48	
[30]	w/ Ψ_{noisy}	4.15	4.58	1.62	2.85	3.30	
	w/ $\Psi_{refined}$	5.36	5.04	3.09	3.13	4.16	
	clean	5.76	4.44	5.47	3.65	4.83	
V IIMV	noisy	3.39	1.78	1.52	0.96	ī.91	
7-01/17 [20]	w/ Ψ_{clean}	4.50	3.22	3.66	2.73	3.53	
[39]	w/ Ψ_{noisy}	4.72	4.11	3.22	2.89	3.74	
	w/ $\Psi_{refined}$	4.99	3.93	5.00	3.18	4.28	

Table 2. Source separation performance of Demucs v3 [38] and CrossNet-Open-Unmix [39] trained on different training datasets. Sub-items below *noisy* dataset indicate data refined with the respective instrument classifiers, denoted as Ψ_{\bullet} .

Method	SDR [dB]					
wieniou	vocals	bass	drums	other	avg	
proposed	4.99	3.93	5.00	3.18	4.28	
threshold = 0.5	$\bar{5}.\bar{0}\bar{6}$	4.13	4.77	3.06	$\bar{4}.\bar{25}$	
adaptive thresholds	4.70	3.72	3.70	2.62	3.68	
train only w/ single-labeled	$\bar{4.90}$	3.73	4.54	3.18	$\bar{4}.\bar{09}$	
+ finetune w/ multi-labeled	4.33	4.33	4.19	3.14	4.00	
self-refining ×5	4.65	3.87	5.07	2.89	4.12	

Table 3. Ablation studies on MSS performances withCrossNet-Open-Unmix.

Figure 4. Precision and recall curves of the proposed classifier across different thresholds (x-axis) on each instrument. The curves are generated using the MUSDB18 test set (*clean*).

Baseline: MSS models trained on the noisy dataset.

Interestingly, the performance of $\Psi_{refined}$ exceeds the performance of Ψ_{clean} , even though Ψ_{clean} is trained with a noise-free labeled dataset. Additional factor to consider is the distinctive nature of the MSS model training framework in our approach.

- If model receives a false-positive sample, it can simply needs to predict silence.
- Conversely, if model receives false-negative sample, it confuses model seriously.
- As a consequence, FN sample have a more significant impact on MSS compared to FP samples, highlighting the increased significance of the recall metric.