Transfer Learning and Bias Correction with Pre-trained Audio Embeddings

I-li-AUDiO

Changhong Wang¹, Gaël Richard¹, Brian McFee²

¹LTCI, Télécom Paris, Institut Polytechnique de Paris, France

²Music and Audio Research Laboratory, New York University, USA

Contributions

- Investigate bias propagation in transfer learning with pre-trained audio embeddings
- Identify potential sources of bias and quantify bias effects
- Propose 4 post-processing countermeasures to mitigate bias

1. Transfer learning with pre-trained audio embeddings

2. Quantifying bias effects

Cosine similarity between domain separation and instrument

recognition

$$\boldsymbol{c}(\boldsymbol{w},\boldsymbol{v}) = \frac{\langle \boldsymbol{w},\boldsymbol{v}\rangle}{\|\boldsymbol{w}\|\times\|\boldsymbol{v}\|}$$

> Domain sensitivity

- Downstream task: instrument recognition (10 classes)
- Datasets: OpenMIC-2018, IRMAS
- Classifier: binary logistic regression

3. Bias correction

- Single bias correction (LDA)
 - Project out undesirable separation direction:

 $x_{\mathrm{P}} := (\mathbf{I} - \mathbf{w}\mathbf{w}^{\mathrm{T}})\mathbf{x}$

x: original embedding, $x_{\rm P}$: processed embedding, I: unit matrix

> Multiple bias correction (mLDA)

- Extract domain separation direction in genre-space: w_a
- Collect w_q into a matrix W
- Factorizing W by reduced singular vector decomposition (SVD) for orthogonal basis V: $W = U\Sigma V^{T}$ $\boldsymbol{x}_{\mathrm{P}} := (\mathbf{I} - VV^{\mathrm{T}})\boldsymbol{x}$

> Nonlinear bias correction (KLDA, mKLDA)

Generalize by explicit kernel approximation

 $\langle f(\boldsymbol{w}), f(\boldsymbol{v}) \rangle \approx k(\boldsymbol{w}, \boldsymbol{v})$

j. Explicit norminear transformation

	Global bias correction				Class-wise bias correction			
Debiasing method	Within-domain		Cross-domain		Within-domain		Cross-domain	
	IR-IR	OP-OP	OP-IR	IR-OP	IR-IR	OP-OP	OP-IR	IR-OP
VGGish	91.6	87.95	<u>82.82</u>	<u>83.81</u>	91.60	87.95	<u>82.82</u>	<u>83.81</u>
VGGish-LDA	91.60	87.99	82.99 (+0.18)	83.82 (0.0)	91.60	87.94	82.93 (+0.12)	83.85 (+0.03)
VGGish-mLDA	91.45	87.98	82.70 (-0.11)	83.30 (-0.51)	91.56	87.87	83.13 (+0.31)	83.66 (-0.16)
VGGish-K	92.24	88.08	82.57 (-0.25)	83.67 (-0.14)	92.24	88.08	82.57 (-0.25)	83.67 (-0.14)
VGGish-KLDA	92.24	88.08	82.58 (-0.24)	83.67 (-0.14)	92.22	88.07	82.70 (-0.12)	83.78 (-0.04)
VGGish-mKLDA	92.22	88.15	82.42 (-0.39)	83.70 (-0.11)	92.26	88.08	82.70 (-0.11)	83.76 (-0.05)
OpenL3	93.26	87.16	<u>80.56</u>	<u>80.13</u>	93.26	87.16	<u>80.56</u>	<u>80.13</u>
OpenL3-LDA	93.26	87.16	80.56 (+0.01)	80.15 (+0.02)	93.24	87.18	80.59 (+0.04)	80.38 (+0.26)
OpenL3-mLDA	93.11	87.16	80.67 (+0.12)	79.93 (-0.20)	93.09	87.23	80.57 (+0.02)	80.62 (+0.50)
OpenL3-K	93.89	87.91	79.46 (-1.09)	81.23 (+1.11)	93.89	87.91	79.46 (-1.09)	81.23 (+1.11)
OpenL3-KLDA	93.89	87.84	79.03 (-1.53)	81.23 (+1.11)	93.96	87.91	79.99 (-0.57)	81.79 (+1.66)
OpenL3-mKLDA	93.88	87.88	79.56 (-1.00)	81.20 (+1.07)	94.04	87.83	79.97 (-0.59)	81.32 (+1.19)
YAMNet	94.65	89.74	<u>85.01</u>	<u>85.47</u>	94.65	89.74	<u>85.01</u>	<u>85.47</u>
YAMNet-LDA	94.65	89.74	85.01 (0.0)	85.47 (0.0)	94.65	89.74	85.02 (0.0)	85.47 (0.0)
YAMNet-mLDA	94.65	89.74	85.01 (0.0)	85.47 (0.0)	94.65	89.74	85.02 (0.0)	85.46 (0.0)
YAMNet-K	93.83	89.24	85.87 (+0.86)	84.56 (-0.91)	93.83	89.24	85.87 (+0.86)	84.56 (-0.91)
YAMNet-KLDA	93.83	89.23	85.87 (+0.86)	84.56 (-0.91)	93.63	89.24	86.00 (+0.99)	84.76 (-0.70)
YAMNet-mKLDA	93.79	89.19	85.72 (+0.71)	84.43 (-1.04)	93.79	89.34	85.53 (+0.51)	84.60 (-0.87)

> Source of bias

Dataset identity, genre distribution, etc.

code: github.com/changhongw/audio-embedding-bias

Conclusion

- Training regime of embeddings, e.g. self-supervised training is more prone to overfitting a domain
- Class-vocabulary alignment between source and downstream task
- Require identifying populations to treat as equivalent