EXPLORING SAMPLING TECHNIQUES FOR GENERATING MELODIES WITH A TRANSFORMER Mathias Rose Bjare¹, Stefan Lattner² and Gerhard Widmer^{1,3}

¹Institute of Computational Perception (CP-JKU), Johannes Kepler University Linz, Austria

²Sony Computer Science Laboratories (CSL), Paris, France

³LIT AI Lab, Linz Institute of Technology, Austria

OHANNES KEPLEI UNIVERSITY LINZ Institute of Computational Perception Sony CSL

INTRODUCTION

•We investigate the impact of distribution sampling techniques on musical qualities such as diversity and structure.

•We evaluate the effect of the sampling techniques in optimal circumstances and suboptimal circumstances.

DISTRIBUTION TRUNCATION

•Nucleus sampling: removes the largest set of events with a probability that sums to a threshold.

•**Typical sampling**: sorts events by "typicality" (deviation of event's information content to entropy) and removes the least typical events with a probability that sums to a threshold.

OBJECTIVE EVALUATIONS

Structural Consistency (Self-similarity deviation)

Scale Conisitency

EXPERIMENTS

SUBJECTIVE EVALUATIONS

Method	QULT	ST_STR	LT_STR	CPLX
REFERENCE	3.7 ±1.0	3.8±1.0	3.7 ±1.1	3.6±0.8
WELL_CONV	3.2 ± 1.1	3.7 ± 0.9	3.5 ± 1.2	3.3 ± 1.0
WELL_NUCL	3.6±1.1	3.9 ±1.1	3.7 ±1.1	2.8 ± 1.0
WELL_TYP	3.4 ± 1.2	3.6±0.9	3.7 ±1.0	3.3±1.0
NOISE_CONV	2.7 ± 1.0	3.2±0.9	3.0 ± 1.0	2.8 ± 0.9
NOISE_NUCL	2.6±1.3	3.2 ± 1.4	2.8 ± 1.5	2.5 ± 1.2
NOISE_TYP	2.7 ± 1.1	3.2±1.1	3.1±1.2	2.4 ± 1.0
TEMP_CONV	2.1±1.3	2.7 ± 1.1	2.1 ± 1.1	3.7 ±1.0
TEMP_NUCL	3.4 ± 1.2	3.6±0.9	3.4±1.3	3.4 ± 1.1
TEMP_TYP	2.2 ± 1.1	2.7 ± 0.9	2.4 ± 1.0	3.3 ± 0.8

Listener study mean-opinion score ± one standard deviation. The measured attributes are overall quality (**QULT**), perceived short-term structure (ST_STR), long-term structure (LT_STR), and complexity (**CPLX**).

MODEL DEGRADATIONS

CONCLUSION

•Higher truncation strength leads to increased structural and tonal consistency.

•The truncation techniques improved musical qualities in suboptimal circumstances but not in optimal.

