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Motivation Experiments and results

Descriptive tags are difficult to obtain and noisy. We need
alternative ways of generating training targets for large
music collections and suitable training approaches to
develop music representation models.

Extracting embeddings from the transformer
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Experimental setup
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2. Transformers allow for better music representations than CNNs throughput (analyzed minutes / second)

3. We propose MAEST, an publicly available music representation model
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Efficient Supervised Training of Audio Transformers for Music Representation Learning
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Xavier Serra, Dmitry Bogdanov

Motivation

Our goal is to propose music representation models with a
focus in semantic music description. We rely on
convolution-free Transformers, and propose experiments
to understand which conditions optimize the downstream
performance.

Experimental setup
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Experiments and results

Extracting embeddings from the transformer
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< We experimented with the class c), distillation d), and average a)
tokens. Staking the three tokens produces the best performance.
<+ The optimal features are in the middle blocks of the transformer.

Music Technology Group, Universitat Pompeu Fabra

Impact of the initial weights

Model RW  DeiT PaSST

Pre-training task: Discogs20

MAEST-10s 205 22.7 22.8
MAEST-10s-swa 20.1 23.2 235

Downstream task: MTT

MAEST-10s 38.7 404 41.1
MAEST-10s-swa 39.0 40.2 41.0

< Starting the training from the PaSST pre-trained weights produces
the best performance in the downstream task.

Effect of the input segmentlength

Model 5s 10s 20s 30s

Pre-training task: Discogs20

MAEST-T 21.1 228 248 26.1
MAEST-T-swa 21.3 235 258 270

Downstream task: MTT

MAEST-T 40.8 41.1 412 41.7
MAEST-T-swa 409 41.0 412 415

<+ We modify the input sequence length, from 5 up to 30 seconds
finding that the results consistently increase in the downstream
task.

Performance in downstream tasks

MTGJ-Genre MTGJ-Inst MTGJ-Mood MTGIJ-T50 MTAT MSDs MSDc
ROC mAP ROC mAP ROC mAP ROC mAP ROC mAP ROC mAP ROC mAP

State of the art

77.8 156 832 298 90.69 3844 922 389 897 348
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Baseline

EffNet-B0 877 199 776 198 75.6 13.6  83.1 29.7 902 374 904 328 839 328

Our models

MAEST-10s  88.1 21.1 79.7 224 779 15.1 840 313 918 410 915 369 89 327
MAEST-20s 88.1 214 799 226 779 152 841 315 918 410 921 392 895 345
MAEST-30s 88.2 21.6 80.0 229 78.1 154 840 315 920 419 924 40.7 898 354

<+ we evaluate our models in the MTG Jamendo Dataset,
MagnaTagAtune and the Million Song Dataset.
< We find that our models are the best performing open solution.

Faster feature extraction with inference patchout
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<+ We experiment applying patchout at inference time.
< Itis possible to reach scenarios where the throughput is higher than
the fully convolutional baselines while keeping higher performance.

Conclusions

< Patchout allows for efficient training and inference with Transformers.

< Transformers allow for better music representations than CNNs

< We propose MAEST, an publicly available music representation
model.
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Motivation

Descriptive tags are difficult to obtain and noisy. We need alternative ways of generating training targets for large music
collections and suitable training approaches to develop music representation models.
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Conclusions

1. Patchout allows for efficient training and inference with Transformers
2. Transformers allow for better music representations than CNNs

3. We propose MAEST, an publicly available music representation model
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