MAEST: Open music representation n for music understanding

<u>Pablo Alonso-Jiménez, Xavier Serra, Dmitry Boqdanov</u>

Music Technology Group, Universitat Pompeu Fabra

Motivation

Descriptive tags are **difficult to obtain** and **noisy**. We need alternative ways of generating training targets for large music collections and suitable training approaches to

Experiments and results

Extracting embeddings from the transformer

develop music representation models.

U - 36.5 38.8 40.2 40.7 40.4 40.1 39.3 38.8 -40 ated -38.1 40.1 40.6 40.4 40.2 39.3 39.6 39.4 b - 39 aten 39.6 40.9 41.0 40.7 40.2 39.3 39.3 - 38 ЫС - 39.2 40.5 41.1 40.6 40.7 39.5 39.4 39.5 ů cda - 37 40.6 41.3 41.1 40.6 39.9 39.4 39.4 39.1 12 Transformer block

Experimental setup

Impact of the initial weights

Model	RW	DeiT	PaSST
Pre-training task: Disco	gs20		
MAEST-10s	20.5	22.7	22.8
MAEST-10s-swa	20.1	23.2	23.5
Downstream task: MTT			
MAEST-10s	38.7	40.4	41.1
MAEST-10s-swa	39.0	40.2	41.0

Conclusions

1. Patchout allows for **efficient training** and **inference** with Transformers

Effect of the input segment length

Model	5s	10s	20s	30s
Pre-training task: Dis	cogs20			
MAEST-T	21.1	22.8	24.8	26.1
MAEST-T-swa	21.3	23.5	25.8	27.0
Downstream task: MT	Т			
MAEST-T	40.8	41.1	41.2	41.7
MAEST-T-swa	40.9	41.0	41.2	41.5

Faster feature extraction with inference patchout

2. Transformers allow for **better music representations** than CNNs

3. We propose MAEST, an publicly available music representation model

throughput (analyzed minutes / second)

Contact: <u>pablo.alonso@upf.edu</u> @pablo alonso

Park, J. Lee, J.W. Ha, and J. Nam. "Representation learning of music using artist label.," in Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR). 2018. [1]

Saeed, Aaqib, Grangier, David, and Zeghidour, Neil. "Contrastive learning of general-purpose audio representations." IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2021. [2]

Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." International Conference on Machine Learning (ICML). 2019. [3]

Hershey, Shawn, et al. "CNN architectures for large-scale audio classification." International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2017. [4]

MAEST: Open music representation n for music understanding

Pablo Alonso-Jiménez, Xavier Serra, Dmitry Bogdanov

Music Technology Group, Universitat Pompeu Fabra

Motivation

Descriptive tags are **difficult to obtain** and **noisy**. We need alternative ways of generating training targets for large music collections and suitable training approaches to

Experiments and results

Extracting embeddings from the transformer

develop **music representation** models.

-40 ated - 38.1 40.1 40.6 40.4 40.2 39.3 39.6 39.4 b - 39 aten 39.6 40.9 41.0 40.7 40.2 39.3 39.3 - 38 ЫС - 39.2 40.5 41.1 40.6 40.7 39.5 39.4 39.5 0 cda - 37 39.1 40.6 41.3 41.1 40.6 39.9 39.4 39.4 Transformer block

Experimental setup

Impact of the initial weights Effect of the input segment length

				2					
Model	RW	DeiT	PaSST	Model	5s	10s	20s	30s	
Pre-training task: Disco	gs20			Pre-training task: Dis	cogs20				
MAEST-10s	20.5	22.7	22.8	MAEST-T	21.1	22.8	24.8	26.1	
MAEST-10s-swa	20.1	23.2	23.5	MAEST-T-swa	21.3	23.5	25.8	27.0	
Downstream task: MTT				Downstream task: MT	Т				
MAEST-10s	38.7	40.4	41.1	MAEST-T	40.8	41.1	41.2	41.7	
MAEST-10s-swa	39.0	40.2	41.0	MAEST-T-swa	40.9	41.0	41.2	41.5	

Conclusions

1. Patchout allows for **efficient training** and **inference** with Transformers

Faster feature extraction with inference patchout

2. Transformers allow for **better music representations** than CNNs

3. We propose MAEST, an publicly available music representation model

throughput (analyzed minutes / second)

[1] Park, J. Lee, J.W. Ha, and J. Nam. "Representation learning of music using artist label.," in Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR). 2018.

[2] Saeed, Aaqib, Grangier, David, and Zeghidour, Neil. "Contrastive learning of general-purpose audio representations." IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2021.

[3] Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." International Conference on Machine Learning (ICML). 2019.

[4] Hershey, Shawn, et al. "CNN architectures for large-scale audio classification." International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2017.

MAEST: Music Audio Efficient Spectrogram Transformer

Efficient Supervised Training of Audio Transformers for Music Representation Learning

Pablo Alonso-Jiménez, Xavier Serra, Dmitry Bogdanov

Music Technology Group, Universitat Pompeu Fabra

Motivation

Our goal is to propose **music representation models** with a focus in **semantic music description**. We rely on **convolution-free Transformers**, and propose experiments

Impact of the initial weights

Model	RW	DeiT	PaSST
Pre-training task: Disco	ogs20		
MAEST-10s	20.5	22.7	22.8
MAEST-10s-swa	20.1	23.2	23.5

to understand which conditions **optimize** the **downstream performance**.

Exper	'imenta	setup

Training

Downstream evaluation

Downstream task: MTT			
MAEST-10s	38.7	40.4	41.1
MAEST-10s-swa	39.0	40.2	41.0

Starting the training from the PaSST pre-trained weights produces the best performance in the downstream task.

Effect of the input segment length

Model	5s	10s	20s	30s
Pre-training task: Dis	cogs20			
MAEST-T	21.1	22.8	24.8	26.1
MAEST-T-swa	21.3	23.5	25.8	27.0
Downstream task: MT	T			
MAEST-T	40.8	41.1	41.2	41.7
MAEST-T-swa	40.9	41.0	41.2	41.5

We modify the input sequence length, from 5 up to 30 seconds finding that the results **consistently increase** in the downstream task.

Performance in downstream tasks

	MTGJ	-Genre	MTG	J-Inst	MTGJ-	Mood	MTG.	J-T50	MT	AT	MS	SDs	MS	Dc
	ROC	mAP	ROC	mAP	ROC	mAP	ROC	mAP	ROC	mAP	ROC	mAP	ROC	mAP
State of the art														
Fully-trained	-	-	-	-	77.8 [42]	15.6 [42]	83.2 [34]	29.8 [34]	90.69 [41]	38.44 <i>[41]</i>	92.2 [40]	38.9 [40]	89.7 [40]	34.8 [40]
Embeddings	87.7 [6]	19.9 [6]	77.6 [6]	19.8 [6]	78.6 [5] [†]	16.1 [5] [†]	84.3 [5] [†]	32.1 [5] [†]	92.7 [7] [†]	41.4 [5] [†]	-	-	90.3 [5] [†]	36.3 [5] †
Baseline EffNet-B0	87.7	19.9	77.6	19.8	75.6	13.6	83.1	29.7	90.2	37.4	90.4	32.8	88.9	32.8
Our models MAEST-10s MAEST-20s MAEST-30s	88.1 88.1 88.2	21.1 21.4 21.6	79.7 79.9 80.0	22.4 22.6 22.9	77.9 77.9 78.1	15.1 15.2 15.4	84.0 84.1 84.0	31.3 31.5 31.5	91.8 91.8 92.0	41.0 41.0 41.9	91.5 92.1 92.4	36.9 39.2 40.7	88.9 89.5 89.8	32.7 34.5 35.4

 we evaluate our models in the MTG Jamendo Dataset, MagnaTagAtune and the Million Song Dataset.

* We find that our models are the **best performing open solution**.

Faster feature extraction with inference patchout

We experiment applying patchout at inference time.

It is possible to reach scenarios where the throughput is higher than

Experiments and results

Extracting embeddings from the transformer

We experimented with the class c), distillation d), and average a) tokens. Staking the three tokens produces the best performance.
The optimal features are in the middle blocks of the transformer.

the fully convolutional baselines while keeping higher performance.

Conclusions

- Patchout allows for efficient training and inference with Transformers.
- Transformers allow for better music representations than CNNs
- We propose MAEST, an publicly available music representation model.

Contact: <u>pablo.alonso@upf.edu</u> <u>@pablo_alonso</u>

MAEST: Open music representation n for music understanding

Pablo Alonso-Jiménez, Xavier Serra, Dmitry Bogdanov

Music Technology Group, Universitat Pompeu Fabra

Motivation

Descriptive tags are difficult to obtain and noisy. We need alternative ways of generating training targets for large music collections and suitable training approaches to develop **music representation** models.

Experimental setup

Experiments and results

Extracting embeddings from the transformer

Impact of the initial weights

Model	RW	DeiT	PaSST
Pre-training task: Disco	ogs20		
MAEST-10s	20.5	22.7	22.8
MAEST-10s-swa	20.1	23.2	23.5
Downstream task: MTT			
MAEST-10s	38.7	40.4	41.1
MAEST-10s-swa	39.0	40.2	41.0

Effect of the input segment length

Model	5s	10s	20s	30s
Pre-training task: Di	scogs20			
MAEST-T	21.1	22.8	24.8	26.1
MAEST-T-swa	21.3	23 5	25.8	27.0

Faster feature extraction with inference patchout

Conclusions

Patchout allows for efficient training and inference with Transformers

2. Transformers allow for **better music representations** than CNNs

3. We propose MAEST, an publicly available music representation model

Contact: <u>pablo.alonso@upf.edu</u> @pablo alonso

Park, J. Lee, J.W. Ha, and J. Nam. "Representation learning of music using artist label.," in Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR). 2018. [1]

Saeed, Aaqib, Grangier, David, and Zeghidour, Neil. "Contrastive learning of general-purpose audio representations." IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2021. [2]

Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." International Conference on Machine Learning (ICML). 2019. [3]

Hershey, Shawn, et al. "CNN architectures for large-scale audio classification." International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2017. [4]

