
Results & Analysis

FlexDTW: Dynamic Time Warping With
Flexible Boundary Conditions

Irmak Bükey1 Jason Zhang2 TJ Tsai3
1 Pomona College 2 University of Michigan 3 Harvey Mudd College

Problem Statement FlexDTW: Overview

Experimental Setup

References & Acknowledgements

FlexDTW: Algorithm

[1] C. Sapp. “Hybrid numeric/rank similarity metrics for musical performance analysis,” ISMIR 2008.
[2] M. Grachten et al. “Automatic alignment of music performances with structural differences,” ISMIR 2013.

This material is based upon work supported by the National Science Foundation under Grant No.
2144050.

● A standard tool for aligning audio performances is dynamic time warping (DTW). DTW
finds the lowest cost alignment path through a pairwise cost matrix.

● DTW and its variants have specific assumptions about the boundary conditions of the
alignment path. DTW assumes the alignment path starts in one corner of the cost
matrix and ends in the opposite corner. Subsequence DTW assumes that the
alignment path starts on the longer edge of the cost matrix and ends on the opposite
edge.

● In practice, the boundary conditions may not satisfy these assumptions or may not be
known in advance. For example, when aligning Youtube performances of classical
music, boundary conditions may be affected by silence or applause at the beginning or
end, or one video having a different number of movements than another video.

Our goal is to develop an alignment algorithm that can flexibly handle a wide variety
of boundary conditions.

Figure shows performance of DTW (multiple
settings), Subsequence DTW (multiple
settings), NWTW [2], and FlexDTW on 16
different boundary conditions.

Bars shows error rate with 200ms error
tolerance. Black lines show error rate with
100ms and 500ms tolerance.

FlexDTW has best or near-best
performance across all 16 boundary
conditions. It is the only algorithm to achieve
good performance on the Partial Overlap
boundary condition.

○ We modified the Chopin Mazurka dataset [1] to simulate different boundary
conditions. Our modifications resulted in a suite of 16 separate benchmarks, where
each benchmark tests performance under a specific boundary condition.

○ Boundary Conditions
■ Full Match: align full recordings of both (original dataset)
■ Subsequence: align random segment of A against full recording of B
■ Partial Start: both recordings start together but one ends early
■ Partial End: both recordings end together, but one starts late
■ Partial Overlap: recording A starts late and recording B ends early
■ Pre: silence is prepended to A and aligned against full recording of B
■ Post: silence is appended to A and aligned against full recording of B
■ Pre-Post: silence is prepended to A and appended to B

● FlexDTW allows the alignment path to start anywhere on the left or bottom edge, and
to end anywhere on the right or top edge. A short buffer region is imposed to avoid
short, degenerate alignment paths near the top left and bottom right corners.

● To fairly compare alignment paths of very different length, we must use a path cost
measure that normalizes by the path length. We could backtrack from every position
(i,j) to determine the length of the alignment path ending at (i,j), but this would require
a prohibitive amount of additional computation

● The key insight of FlexDTW is that Manhattan distance can be computed by simply
knowing the starting point of the alignment path (not the actual path itself). This
information can be computed recursively during dynamic programming, eliminating the
need for backtracking.

1. Initialize
● Cumulative cost matrix D ∈ RNxM:
● Backtrace matrix B ∈ ZNxM

● Starting point matrix S ∈ ZNxM:

2. Dynamic Programming
● Paths compared using normalized cost measure
●

3. Backtracking
● Select best endpoint as

and backtrack

Runtime
● Average runtime (10 trials) in seconds to process a cost matrix of size NxN:

● FlexDTW incurs a 20-25% runtime overhead compared to DTW and a 10-15% runtime
overhead compared to subsequence DTW.

Memory
● FlexDTW has memory overhead for storing the additional starting point matrix S ∈ ZNxM.

For sequence lengths <215, the overhead is 2NM bytes (12% increase in total memory).
For sequence lengths >215, the overhead is 4NM bytes (24% increase).

