PASSAGE SUMMARIZATION WITH RECURRENT MODELS FOR AUDIO-SHEET MUSIC RETRIEVAL

Luís Carvalho¹ and Gerhard Widmer^{1,2}

¹Institute of Computational Perception (CP-JKU), ²LIT Artificial Intelligence Lab

Task and Motivation

Audio-Sheet Music Retrieval (ASR):

- find the appropriate recording(s) from a database given a sheet music query, and vice versa
- raw data: audio recordings and scanned sheet music
- target: classical piano music

Limitations of deep-learning ASR methods:

- fine-grained annotated data for training
- Noteheads aligned to onsets
- training samples are fixed in size
- different musical content in sample pairs

Our Approach and Proposed RNN Model

- learn cross-modal representations from longer and variablelength passages of music
- encode a pair of matching sequences of fixed-size snippets using GRUs

Benefits:

- weaker-level mappings
- handle the temporal mismatches

Experiments and Results

passage retrieval evaluation

• embedding space analysis: pairwise cosine distances

	Audio-to-Score (A2S)					Score-to-Audio (S2A)				
	R@1	R@10	R@25	MRR	MR	R@1	R@10	R@25	MRR	MR
I MSMD (Full	ly synthe	tic)								
BL [1]	47.56	81.68	90.80	0.592	1	51.37	83.51	92.59	0.628	1
RNN	51.12	84.46	92.88	0.627	1	54.30	85.95	94.94	0.670	1
RNN-FT	55.27	87.98	95.02	0.651	1	56.32	87.12	96.44	0.697	1
RNN-FT-CCA	60.04	89.66	97.73	0.692	1	62.11	91.44	98.41	0.734	1
BL [1] RNN RNN-FT	20.19 25.09 28.87	55.47 61.24 66.41	74.99 78.27 81.32	0.343 0.374 0.447	7 5 4	25.15 30.15 33.98	70.27 72.47 75.47	83.11 86.89 88.51	0.391 0.439 0.462	5 3 2
KININ-FI-CCA	33.30	09.49	03.00	0.401	3	57.55	19.22	09.95	0.558	1
III RealScores_	Rec (She	eet music	scans and	real reco	ordings)					
BL [1]	15.67	31.46	48.12	0.226	29	18.30	36.71	54.94	0.266	18
RNN	19.11	35.98	53.65	0.278	21	22.76	39.95	57.47	0.303	15
RNN-FT	22.39	39.53	57.19	0.338	18	26.76	42.77	59.38	0.371	7
RNN-FT-CCA	26.62	44.81	60.01	0.362	7	29.84	46.71	60.88	0.435	4

[1] M. Dorfer, J. Hajic jr., A. Arzt, H. Frostel, and G. Widmer. Learning audio-sheet music correspondences for cross-modal retrieval and piece identification. TISMIR, 1(1), 2018.

contact email: luis.carvalho@jku.at

This work is supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme, grant agreement No 101019375 (Whither Music?) and the Federal State of Upper Austria (LIT AI Lab).