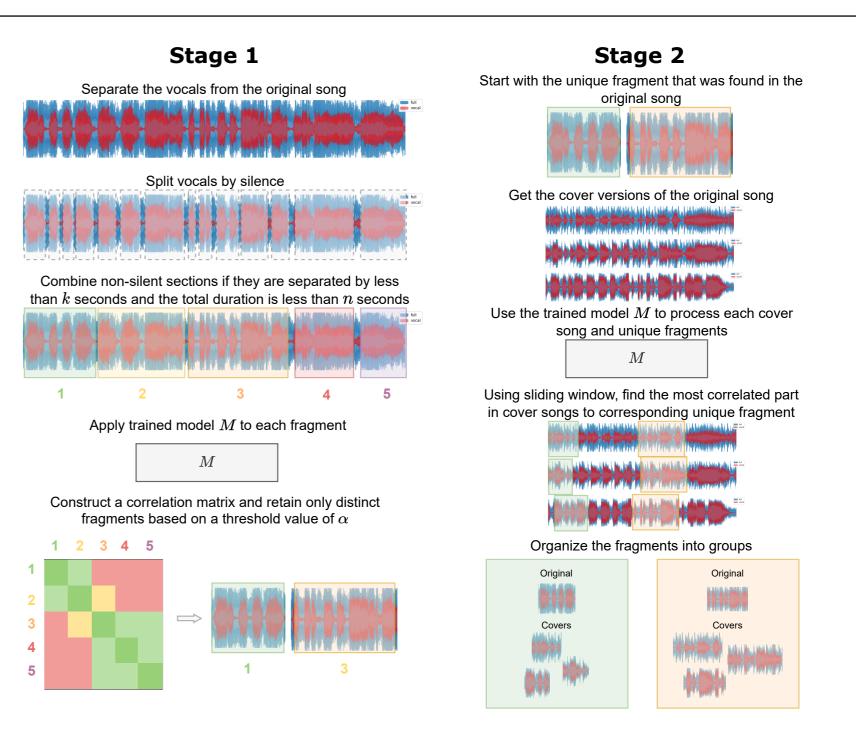
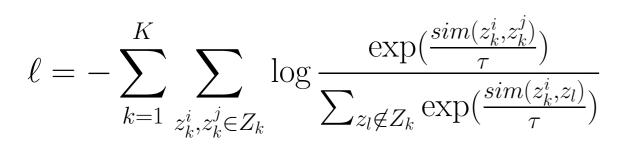


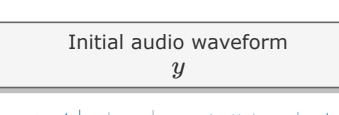
A Semi-Supervised Deep Learning Approach to **Dataset Collection for Query-by-Humming Task**


Dmitry Lamanov² Maksim Titov² Ivan Vovk² Ilya Makarov³ Mikhail Kudinov² Amantur Amatov¹ ²Huawei Noah's Ark Lab ¹Higher School of Economics ³AI Center, NUST MISiS

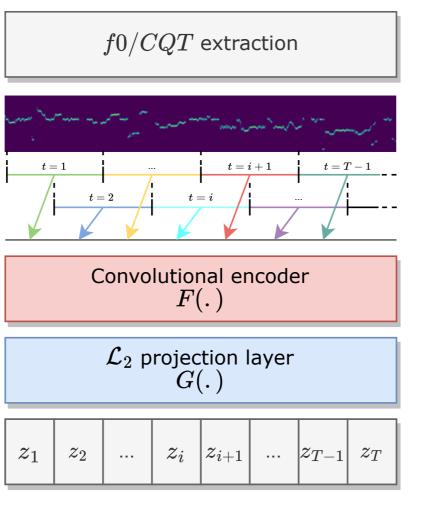
Highlights

- We present a semi-supervised data collection and training **pipeline** for the **Query-by-Humming** task, utilizing it as a specialized instance of the **Cover Song Identification** task.
- We contribute a novel dataset **Covers and Hummings Aligned Dataset (CHAD)**, comprising **18 hours** of short music fragments paired with time-aligned hummed versions collected through crowdsourcing. Additionally, our pipeline has extended the dataset to include over 300 hours of music fragments paired with time-aligned cover versions.
- We demonstrate the **effectiveness** of employing cover songs to train Query-by-Humming models, resulting in competitive performance on both **benchmark datasets** and our **internal** large-scale dataset.
- The dataset download script is available on our GitHub page!


Backbone model


Aligned fragments extraction algorithm

Cover and Hummings Aligned Dataset


- 1. Use the pre-trained audio source separation model V(.) to extract the **vocal part** from the signal y.
- 2. Extract **spectral features**, either the fundamental frequency (f0)using CREPE [1] or the Constant-Q Transform (CQT), from the vocal part.
- 3. Apply a ResNet18-based [2] convolutional encoder F(.).
- 4. Apply \mathcal{L}_2 -normalisation layer G(.).
- 5. Obtain output fingerprints $Z = z_{ii=1...T}$, where T is the total number of fingerprints, and each fingerprint has a dimension size of 128.
- 6. Metric learning loss function:

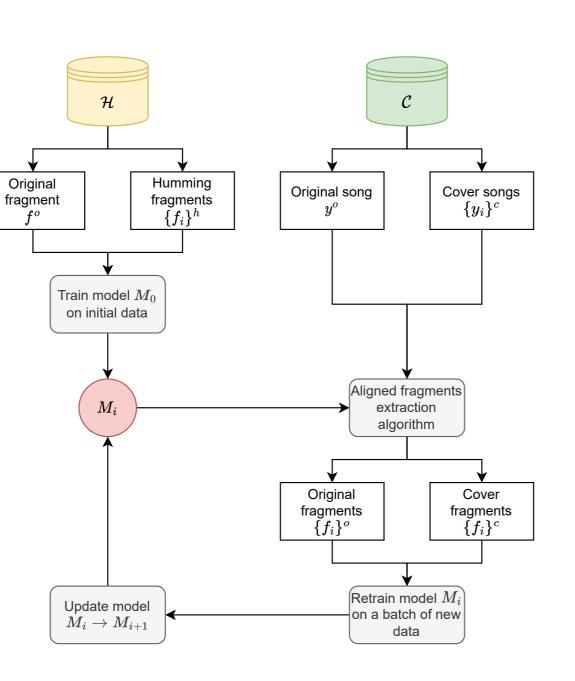
والتقاميل إستاستان أرعام ليتقيد لاسام المتليبان إرياسه المساميات المتقامين والمتليبان والمتليب والمراجلة والأمل بتغايف بداريهم والبانية بالألفاء بغموض ووالته لأوقط أشريتهم

> Vocal extraction model V(.)

Semi-supervised pipeline

- CHAD contains 5494 original songs, 31630 cover songs, and 5164 hummings fragments.
- 81781 audio fragments with 270 hours of singing/humming and 51 hours of original song fragments.
- In hummings subset \mathcal{H} , the total duration for original fragments -2.12 hours, and for humming fragments - 15.83 hours.
- In covers subset C, the total duration for original fragments 49.54 hours, and cover fragments - 259.03 hours.
- The metadata includes YouTube ID, title, author, cover fragment correlation values, time interval, and whether it is double-checked.

Results


Results on benchmark datasets:

	Method	Top-10 hit rate ↑						
	- Techood	Jang[3]	Thinkit	Subtask 2	Jang Real	MTG-QBH [4]		
Ours	metric learning(CREPE) metric learning(<i>CQT</i>)			0.959 0.866	0.868 0.867	0.883 0.747		
Stasiak [5] ACRCloud	f0-matching proprietary	0.948 0.990	0.907 0.986	0.968 0.972	-	- -		

• Results on a large-scale internal dataset of 90k songs:

		Partition Model	Top- n hit rate↑				
Partition Model	Top- n hit rate \uparrow		100	10	5	3	

- 1. Train the **initial model** M_0 using hummed fragments collected via crowdsourcing.
- 2. Collect groups of cover songs, either by scraping from YouTube or using open-source datasets.
- 3. Using M_0 , extract aligned fragments from each group of cover songs using **aligned fragments** extraction algorithm.
- 4. Retrain model on newly gathered data and repeat the process.

Partition	Model		lop-n h	-n hit rate↑			100	10	5	3			
		100	10	5	3	\mathcal{C}	1.6		0.931	0.904	0.885	0.865	
С	M_{short}	0.643	0.548	0.524	0.476	\mathcal{C} +	${\cal H}^{~~M_{fust}}$	fused	0.923	0.899	0.885 0.885	0.856	
	M_{long}		0.277				Docu	lta d	on cinc	ting at	uorioc		
	M_{fused}	0.759	0.621	0.603	0.517		Resu	115 (ging queries.			
$\mathcal{C}+\mathcal{H}$	M_{short}	0.659	0.595	0.571	0.484		Model						
	M_{long}	0.595	0.508	0.413	0.389				ANN	Ker	ranking		
	M_{fused}	0.776	0.707	0.691	0.586		M_{short}	1.4	1 ± 0.5	57 5.37	7 ± 0.87	7	
Results on humming queries.							M_{long}	0.5	52 ± 0.1	.1 2.39	9 ± 0.43	3	
Results of Humming queries.							Search speed.						
References													

- [1] J. W. Kim, J. Salamon, P. Li, and J. P. Bello, "Crepe: A convolutional representation for pitch estimation," 2018.
- [2] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," CoRR, vol. abs/1512.03385, 2015.
- [3] J.-S. R. Jang, "Qbsh: A corpus for designing qbsh (query by singing/humming) systems."
- [4] J. Salamon, J. Serrà, and E. Gómez, "Tonal representations for music retrieval: From version identification to guery-by-humming," International Journal of Multimedia Information Retrieval, special issue on Hybrid Music Information Retrieval, vol. 2, pp. 45-58, 03 2013.
- [5] B. Stasiak, "Follow that tune adaptive approach to dtw-based query-by-humming system," Archives of Acoustics, vol. 39, pp. 467 -, 01 2014.