- PESTO -

Pitch Estimation with Self-supervised Transposition-equivariant Objective

Alain Riou^{1,2}, Stefan Lattner², Gaëtan Hadjeres³, Geoffroy Peeters¹ ¹Télécom Paris, ²Sony CSL, ³Sony Al

pred. pitch

distribution

((||))

Pitch estimation without annotations

- Pitch estimation as a classification problem
- **SSL** approach: no labels required
- Compatible with music styles for which no annotated examples

- We compute the **CQT** of the input signal
- \rightarrow translation = pitch-shift
- One pitch prediction per frame \rightarrow prediction resolution = CQT hop size

Transposition-equivariant objective

- Define $\mathbf{a} = (\alpha, \alpha^2, ..., \alpha^d)^{\mathsf{T}}, \alpha > 0$.
- Let $\mathbf{y}, \mathbf{y}' \in [0,1]^d$ be two distributions. If y and y' are equal up to a shift of k

$$\mathbf{a}^{\top}\mathbf{y}' = \boldsymbol{\alpha}^{k}\mathbf{a}^{\top}\mathbf{y}$$

• Hence our **equivariance** loss:

$$\mathcal{L}_{\text{equiv}}(\mathbf{y},\mathbf{y}',\mathbf{k}) = \left\|\frac{\mathbf{a}^{\top}\mathbf{y}'}{\mathbf{a}^{\top}\mathbf{y}} - \boldsymbol{\alpha}'\right\|$$

Pitch-preserving transforms for improving robustness

- Pitch-preserving transforms are applied to the signals for the model to see audios with same pitch but different timbre
- The model aims to minimize the **cross-entropy** between distributions of audios that share the same pitch
- When possible, mixing **background music** with different SNR makes the model more robust

Transposition-preserving lightweight architecture

Toeplitz fully-connected layer W-1 W-2 W-3 W-4 W-5 W-W2 W1 W0 W-1 W-

Experimental results

			Raw Pitch Accuracy	
Model	# params	Trained on	MIR-1K	MDB-stem-synth
SPICE [19]	2.38M	private data	90.6%	89.1%
DDSP-inv [45]	-	MIR-1K / MDB-stem-synth	91.8%	88.5%
PESTO (ours)	28.9k	MIR-1K	96.1%	94.6%
PESTO (ours)	28.9k	MDB-stem-synth	93.5%	95.5%
CREPE [16]	22.2M	many (supervised)	97.8%	96.7%

- Trained on *MIR-1K* or *MDB-stem-synth*
- Strong generalization performances
- **Outperforms** SSL baselines even in the cross-dataset scenario
- Much more lightweight and faster than CREPE
- Equivariance loss and Toeplitz fully-connected layer are **crucial**

ConvBlocks **ResBlocks**

- The architecture is mostly **1d convolutions** and **elementwise operations** \bullet
- Thanks to the **Toeplitz** linear layer, translations are completely preserved \rightarrow If the CQT is shifted, then the probability density is shifted accordingly
- Overall architecture has less than 30k parameters! \bullet

Conclusion

- **SOTA** in self-supervised pitch estimation
- Can be trained on any audio: suited for non-Western music
- 12x faster than real-time on CPU
- Code and pretrained models available online
- **Pip-installable package:** pip install pesto-pitch

言欲豊悦