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Pitch estimation without annotations

e Pitch estimation as a

classification problem neural network
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audio signal

e SSL approach:
no labels required

e Compatible with music
styles for which no
annotated examples

CQT as a proxy for pitch-shift ‘l Jh
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e \We compute the CQT of the input signal

e CQT'’s frequency scale is logarithmic
=> translation = pitch-shift \ l
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e One pitch prediction per frame
=> prediction resolution = CQT hop size

e COiriginally introduced in SPICE
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CQT for fast pitch-shift
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Pitch-preserving transforms
for improving robustness

e Pitch-preserving transforms are applied to the signals for
the model to see audios with same pitch but different timbre

e The model aims to minimize the cross-entropy between
distributions of audios that share the same pitch
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e \When possible, mixing background music with different SNR
makes the model more robust

Experimental results

Pitch-preserving transform

Transposition-equivariant objective

e Definea=(q, o? ..., a9, a>0.

o Lety,y’ € [0,1]° be two distributions.
If y and y’ are equal up to a shift of k

aTy’ _ &ka"l'y

¢ Hence our equivariance loss: (a o2 o® of o a® o ab)
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e Thislossis null wheny’is a

translation of y (a a®a®a*a®a® a’ o)

e As a regularization, we also minimize
the shifted cross-entropy LgcEg
between y and y’ translated by k bins

Neural network Pitch distributions
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Raw Pitch Accuracy

Model # params Trained on MIR-1K  MDB-stem-synth
SPICE [19] 2.38M private data 90.6% 89.1%
DDSP-inv [45] - MIR-I1K | MDB-stem-synth  91.8% 88.5%
PESTO (ours) 28.9k MIR-1K 96.1% 94.6%
PESTO (ours) 28.9k MDB-stem-synth 93.5% 95.5%
CREPE [16] 22.2M many (supervised) 97.8% 96.7 %

e Trained on MIR-1K or MDB-stem-synth

e Strong generalization performances

e Outperforms SSL baselines even in the cross-dataset scenario

e Much more lightweight and faster than CREPE

e Equivariance loss and Toeplitz fully-connected layer are crucial
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Toeplitz fully-connected layer

Transposition-preserving
lightweight architecture
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e The architecture is mostly 1d convolutions and elementwise operations

e Thanks to the Toeplitz linear layer, translations are completely preserved
= If the CQT is shifted, then the probability density is shifted accordingly

e Opverall architecture has less than 30k parameters!

Conclusion

SOTA in self-supervised pitch estimation

Can be trained on any audio: suited for non-Western music
12x faster than real-time on CPU

Code and pretrained models available online

Pip-installable package: pip install pesto-pitch
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