

Singer Identity Representation Learning using Self-Supervised Techniques

		Pre-tra	ole	General purpose SSL																	
	Model					#Para	ms	SR Dim.				Backbone					_				
	GE2E F-ResNet				1.4M		16		256		L	LSTM			Wan et. al, 2018						
					1.4M		16		512		R		et-3	34		Chu	ung et	.al, 20	20		
		H/ASP Wav2Vec-base XLSR-53			8.0M		16		512 12X76		R		et-3	34		Kw	Kwon et al., 20				
				se	95M		16				W	Vav2	Ve	c 2.0)	Bae	3aevski et. al, 202				
					300M		16		24X1024		W	Wav2Vec 2.0			Conneau et. al, 2021						
		Ours				5.0M		44.	1	1000			EfficientNet-B0					_			
							Re	su	lts	5											
				Sp	beech	n base	eline	s oi	n si	ngin	g vo	oice	2								
		vork r baselir		peri	form	•	id on	sir	nila	arity,	we	llo	n ic	ler		icat	tio	n			
Alto-1 -	- 0.92	0.8 0.82	0.28	0.78	0.81 0.4	45 0.29	- 0.9														
Alto-6 -	- 0.8 (0.93 0.86	0.52	0.9 (0.89 0.4	49 0.5						R.							1		
							- 0.8		1					_	2					_	
Alto-7 -	- 0.82 (0.86 0.92	0.46	0.83 (J.81 0.5	53 0.45	- 0.7		X			69			2		•	Alto	1 1000		
Bass-1 -	0.28 (0.52 0.46	0.9	0.56 (0.47 0.6	54 0.83		1	X		X			00		-	•	Alto			
oprano-2 -	- 0.78	0.9 0.83	0.56	0.95 (0.91 0.5	54 0.56	- 0.6	1				100 TE	. 30				•	Bas		2	
oprano-3 -	- 0.81 (0.89 0.81	0.47	0.91 (0.93 0.4	47 0.47	- 0.5			153			No.	5.	5				orano. orano		
1.31											2	>2	4	\sum	\leq	4	•	Ten	or-4	05284	
lenor-4 -	- 0.45 (0.49 0.53	0.64	0.54 (J.47 0.	8 0.69	- 0.4			\prec	1	X	4		\succ	X	•	Ten	or-6		
Tenor-6 -	0.29	0.5 0.45	0.83	0.56 (0.47 0.6	59 <mark>0.87</mark>	- 0.3	/	2	5	\sum	\searrow		7	\nearrow		1				
		0 1	10000	~	~ +	10				~	1	1	/			/					

Common idea: representations from the same recording should be close

We trained models with the following SSL techniques:

The trained SSL models were **comparable or superior** to baselines Best on out-of-domain: **BYOL Comparison of SSL techniques** Best In-domain: Contrastive Conclusion

Left: Average similarity score between singers over 100 4s clip draws for each singer (M4Singer dataset)

Right: T-SNE visualization for the same embeddings in 3D (original dimensionality is 1000)

- **Trained** identity encoders using **Self-Supervised Learning (SSL)**
- **Dataset**: large unlabeled singing voice isolated recordings
- **Comparison** with publicly available pre-trained speech models
- **Evaluation** on singer identification and similarity tasks
- A big gap still exists for challenging datasets
- Release of code and trained models

S

