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Denoising Diffusion Implicit Models (DDIMSs)

 Musical Timbre is the
of a musical sound that are different from pitch "

“n

and amplitude contours™” [1].

« Timbre Transfer consists in converting a

musical piece from one timbre to another whil

preserving the other music-related

perceived characteristics
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/ « Diffusion Models convert

'{ input samples from a
// standard Gaussian
\ 4 distribution into samples

from an empirical data
» '||I||'|' distribution through

iterative denoisin
characteristics. f i . @ process °
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* Usually performed through generative models —/—+F 7—F adding noise - Denoising Diffusion Implicit Models [2]

such as Generative Adversarial Networks + Reverse Process > « Generalize to non-markovian forward diffusion process

(CycleGAN) Removing noise (U- « Same training procedure of probabilistic counterpart
« In this work we apply Denoising Diffusion Models Net) - Allow for faster sampling times
DiffTransfer

« Timbre transfer achieved through conditional denoising diffusion implicit model

« Log mel-scaled spectrograms converted from one timbre to another while keeping

musical content

« Audio track reconstructed through pre-trained SoundStream Decoder|[3]
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« Training procedure similar to image-to-image model Palette[4]: Conditioning

Noise 11, instrument concatenated with noise
Loss
At inference time only conditioning instrument is needed
e e e e e e e e e e e e e e e e e e e e e e = I« Model needs to be retrained if type of instruments are changed
Evaluation
. We use the StarNet dataset [5] * Objective Evaluation  Subjective Evaluation
 Strings-Piano and Vibraphone-Clarinet paired 16 kHz audio tracks
 Fréchet Audio Distance (FAD)[8]: « Listening test, 18 human participants,
» We compare DiffTransfer with reference-free metric for music split into two parts
enhancement algorithms, measures « Single Instrument timbre transfer
« Universal Network [6]: for single instrument timbre transfer perceptual similarity between the « Multiple instrument timbre transfer
« Music-STAR (mixture-supervised) model [7]: for multi-instrument timbre transfer generated audios with respect to the - Conditions rated in terms of similarity
ground truth one with respect to reference track on a 1

« We consider three timbre transfer tasks
- Single: only single instruments are converted : |
- Single/mixed: separate conversions of single instruments are mixed in order to between the generated audios with

create the desired mixture track

 Mixture: the mixture is directly converted

 Training Procedure

« DiffTransfer trained for 5000 epochs using batch size 16 with AdamW optimizer
« 6 models trained: vibraphone to piano, piano to vibraphone, clarinet to strings, strings
to clarinet, vibraphone/clarinet to piano/strings and piano/strings to

(bad) - 5 (Excellent) Likert scale
 Jaccard Distance: perceptual similarity

respect to the ground truth one

* Input:
Clarinet

Frequency [kHz]
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 Output (DiffTransfer):

vibraphone/clarinet.
Objective Evaluation

Method FAD | | JD |
Universal Network (single) 7.09 0.53
DiffTransfer (single) 2.58 0.28
Universal Network (single/mixed) | 10.47 | 0.64
DiffTransfer (single/mixed) 4.73 0.46
Music-STAR (mixture) 8.93 0.57
DiffTransfer (mixture) 4.37 0.38

Subjective Evaluation Strings  p—)
Method Similarity

Universal Network (single) 1.82

Frequency [kHz]
O = N W OtoY =1

DiffTransfer (single) 3.68

Universal Network (single/mixed) 1.69 * Ground Truth:
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Music-STAR (mixture) 2.89
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Frequency [kHz]
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DiffTransfer (mixture) 3.80
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