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Context

• Musical Timbre is the “”perceived characteristics 
of a musical sound that are different from pitch 
and amplitude contours”” [1].
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Model
• Timbre Transfer consists in converting a 

musical piece from one timbre to another while 
preserving the other music-related 
characteristics.

• Usually performed through generative models 
such as Generative Adversarial Networks 
(CycleGAN)

• In this work we apply Denoising Diffusion Models

Denoising Diffusion Implicit Models (DDIMs)

DiffTransfer

Diffusion
Decoder

Concatenate

L1 
Loss

Conditioning
Instrument

Sinusoidal
Embedding

Diffusion
Noise

Predicted
Noise

!!"##$%"&'
Target

Instrument

Diffusion
Decoder

Concatenate

Conditioning
instrument

Predicted
Noise

Diffusion
Noise

Predicted
Target Instrument

Predicted
Target Instrument

Audio

SoundStream

Evaluation

Forward Process

Reverse Process

• Diffusion Models convert 
input samples from a 
standard Gaussian 
distribution into samples 
from an empirical data 
distribution through 
iterative denoising 
process
• Forward Process à

adding noise 
• Reverse Process à

Removing noise (U-
Net)

• Denoising Diffusion Implicit Models [2]
• Generalize to non-markovian forward diffusion process
• Same training procedure of probabilistic counterpart
• Allow for faster sampling times

Training

Inference
• Timbre transfer achieved through conditional denoising diffusion implicit model

• Log mel-scaled spectrograms converted from one timbre to another while keeping 
musical content

• Audio track reconstructed through pre-trained SoundStream Decoder[3]

• Training procedure similar to image-to-image model Palette[4]: Conditioning 
instrument concatenated with noise

• At inference time only conditioning instrument is needed

• Model needs to be retrained if type of instruments are changed

• We use the StarNet dataset [5]
• Strings-Piano and Vibraphone-Clarinet paired 16 kHz audio tracks

• We compare DiffTransfer with

• Universal Network [6]: for single instrument timbre transfer
• Music-STAR (mixture-supervised) model [7]: for multi-instrument timbre transfer

• We consider three timbre transfer tasks
• Single: only single instruments are converted
• Single/mixed: separate conversions of single instruments are mixed in order to

create the desired mixture track
• Mixture: the mixture is directly converted

• Training Procedure
• DiffTransfer trained for 5000 epochs using batch size 16 with AdamW optimizer
• 6 models trained:  vibraphone to piano, piano to vibraphone, clarinet to strings, strings 

to clarinet, vibraphone/clarinet to piano/strings and piano/strings to 
vibraphone/clarinet.

Scan for GitHub + 
Listening Examples!

0 2 4 6 8 10
Time [s]

0
1
2
3
4
5
6
7
8

Fr
eq

ue
nc

y
[k

H
z]

(a)

0 2 4 6 8 10
Time [s]

0
1
2
3
4
5
6
7
8

Fr
eq

ue
nc

y
[k

H
z]

(b)

0 2 4 6 8 10
Time [s]

0
1
2
3
4
5
6
7
8

Fr
eq

ue
nc

y
[k

H
z]

(c)

Figure 3: Example of Timbre Conversion log mel Spectro-
grams using the DiffTransfer architecture, obtained when
converting Clarinet (a) to Strings (b). The ground truth
Strings spectrogram is shown in (c).

ment algorithms, which views the embeddings as a conti-
nous multivariate Gaussian and is computed between the
real and generated data as

FAD = ||µr � µg||2 + tr(⌃r + µg � 2
p

⌃r⌃g), (4)

where (µr,⌃r) and (µg,⌃g) are the mean and covariances
of the embeddings corresponding to the real and generated
data, respectively. Similarly to [20], we compute FAD in
order to analyze the perceptual similarity between the gen-
erated audios with respect to the ground truth one, corre-
sponding to the original StarNet dataset.

To understand the content-preservation capabilities of
the model, following [35], we compute how the pitch con-
tours of generated ground truth audio tracks are dissimilar,
by calculating the mismatch between two sets of pitches A
and B through the Jaccard Distance

JD(A,B) = 1� |A \B|
|A [B| , (5)

where a lower value corresponds to a lower mismatch and
thus to a higher degree of similarity between the gener-
ated pitch contours. Pitch contours are computed using a
multi-pitch version of the MELODIA [36] as implemented
in the Essentia library [37], rounding pitches to the nearest
semitone. We report the values obtained by computing the
metrics on the test dataset in Table 1.

Objective Evaluation

Method FAD # JD #
Universal Network (single) 7.09 0.53

DiffTransfer (single) 2.58 0.28
Universal Network (single/mixed) 10.47 0.64

DiffTransfer (single/mixed) 4.73 0.46
Music-STAR (mixture) 8.93 0.57
DiffTransfer (mixture) 4.37 0.38

Table 1: Objective Evaluation of the proposed DiffTrans-
fer Method compared to the baselines, in terms of Fréchet
Audio Distance (FAD) and Jaccard Distance (JD). Results
are averaged over all participants and over all the tracks
considered for each part of the test.

4.5 Subjective Evaluation

In order to evaluate subjectively the timbre transfer capa-
bilities, we perform a listening test with 18 human partici-
pants. The web page of the test is available at 3 . The test
was split into two parts corresponding to the single and
multiple instrument application scenarios, respectively.

During the single instrument part of the test, the users
listened to four tracks, corresponding to the four types of
conversions performed, namely: clarinet to strings, strings
to clarinet, piano to vibraphone, vibraphone to piano. Each
example consisted of two conditions, one obtained via the
DiffTransfer model and the other through the Universal
Network.

In the second part of the test, concerning multiple in-
strument timbre transfer, a total of four tracks were consid-
ered, two for the conversion from vibraphone/strings to pi-
ano/strings waveforms and two for the reverse conversion.
Each example consisted of four conditions, namely DiffS-
tar (single/mix), Universal Network (single/mix), DiffStar
(mixture) and Music-STAR (mixture).

Both the order of conditions and the order of examples
in each separate part of the test were randomized.

The participants were asked to rate the conditions in
terms of similarity with respect to the reference track on
a 5 elements Likert scale where 1 corresponds to bad and
5 to excellent. We report the results obtained through the
listening test in Table 2.

4.6 Discussion

By briefly inspecting both the objective and subjective re-
sults, reported in Table 1 and 2, respectively, it is clear how
the proposed DiffTransfer model outperforms the Univer-
sal Network and Music-STAR baselines both for what con-
cerns the single and multiple timbre transfer tasks.

When considering single timbre results, DiffTransfer is
able to achieve significantly better performances in terms
of FAD, Jaccard Distance and Perceived Similarity, with
respect to the Universal network. The gap between the two
methods becomes even more evident when considering the

3 https://listening-test-ismir-ttd.
000webhostapp.com/

Subjective Evaluation

Method Similarity

Universal Network (single) 1.82
DiffTransfer (single) 3.68

Universal Network (single/mixed) 1.69
DiffTransfer (single/mixed) 3.78

Music-STAR (mixture) 2.89
DiffTransfer (mixture) 3.80

Table 2: Objective Evaluation of the proposed DiffTrans-
fer Method compared to the baselines, in terms of per-
ceived similarity with respect to the ground truth on a Lik-
ert scale from 1 (Bad) to 5 (Excellent). Results are aver-
aged over all test tracks.

single/mixed case, i.e. when single timbre transfer tracks
are mixed in order to form the desired mixture audio.

For what concerns the Music-STAR method, the gap
with respect to DiffTransfer remains high in terms of FAD,
but becomes less noticeable when considering JD and the
perceived subjective similarity.

5. CONCLUSION

In this paper, we have presented DiffTransfer a technique
for both single- and multi-instrument timbre transfer using
Denoising Diffusion Implicit models. The novelty of the
proposed approach lies in the fact that in addition to be-
ing, to the best of our knowledge, the first application of
diffusion models to timbre transfer, it is the first model to
be tested in order to perform single and multi-timbre trans-
fer, without varying the architecture depending on which
application is chosen. We compared the proposed model
with state-of-the-art Universal Network and Music-STAR
baselines through both objective evaluation measures and
a listening test, demonstrating the better capabilities of the
proposed DiffTransfer approach.

Future works will involve increasing the audio quality
of the generated audio, by taking into account the consis-
tency of subsequent generated spectrograms. Furthermore,
we plan on modifying the model in order to be able to
perform unpaired timbre transfer, which greatly eases the
dataset requirements and applicability of the technique.
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• Objective Evaluation

• Fréchet Audio Distance (FAD)[8]:  
reference-free metric for music 
enhancement algorithms, measures 
perceptual similarity between the 
generated audios with respect to the 
ground truth one

• Jaccard Distance: perceptual similarity 
between the generated audios with 
respect to the ground truth one
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Figure 3: Example of Timbre Conversion log mel Spectro-
grams using the DiffTransfer architecture, obtained when
converting Clarinet (a) to Strings (b). The ground truth
Strings spectrogram is shown in (c).

ment algorithms, which views the embeddings as a conti-
nous multivariate Gaussian and is computed between the
real and generated data as

FAD = ||µr � µg||2 + tr(⌃r + µg � 2
p

⌃r⌃g), (4)

where (µr,⌃r) and (µg,⌃g) are the mean and covariances
of the embeddings corresponding to the real and generated
data, respectively. Similarly to [20], we compute FAD in
order to analyze the perceptual similarity between the gen-
erated audios with respect to the ground truth one, corre-
sponding to the original StarNet dataset.

To understand the content-preservation capabilities of
the model, following [35], we compute how the pitch con-
tours of generated ground truth audio tracks are dissimilar,
by calculating the mismatch between two sets of pitches A
and B through the Jaccard Distance

JD(A,B) = 1� |A \B|
|A [B| , (5)

where a lower value corresponds to a lower mismatch and
thus to a higher degree of similarity between the gener-
ated pitch contours. Pitch contours are computed using a
multi-pitch version of the MELODIA [36] as implemented
in the Essentia library [37], rounding pitches to the nearest
semitone. We report the values obtained by computing the
metrics on the test dataset in Table 1.

Objective Evaluation

Method FAD # JD #
Universal Network (single) 7.09 0.53

DiffTransfer (single) 2.58 0.28
Universal Network (single/mixed) 10.47 0.64

DiffTransfer (single/mixed) 4.73 0.46
Music-STAR (mixture) 8.93 0.57
DiffTransfer (mixture) 4.37 0.38

Table 1: Objective Evaluation of the proposed DiffTrans-
fer Method compared to the baselines, in terms of Fréchet
Audio Distance (FAD) and Jaccard Distance (JD). Results
are averaged over all participants and over all the tracks
considered for each part of the test.

4.5 Subjective Evaluation

In order to evaluate subjectively the timbre transfer capa-
bilities, we perform a listening test with 18 human partici-
pants. The web page of the test is available at 3 . The test
was split into two parts corresponding to the single and
multiple instrument application scenarios, respectively.

During the single instrument part of the test, the users
listened to four tracks, corresponding to the four types of
conversions performed, namely: clarinet to strings, strings
to clarinet, piano to vibraphone, vibraphone to piano. Each
example consisted of two conditions, one obtained via the
DiffTransfer model and the other through the Universal
Network.

In the second part of the test, concerning multiple in-
strument timbre transfer, a total of four tracks were consid-
ered, two for the conversion from vibraphone/strings to pi-
ano/strings waveforms and two for the reverse conversion.
Each example consisted of four conditions, namely DiffS-
tar (single/mix), Universal Network (single/mix), DiffStar
(mixture) and Music-STAR (mixture).

Both the order of conditions and the order of examples
in each separate part of the test were randomized.

The participants were asked to rate the conditions in
terms of similarity with respect to the reference track on
a 5 elements Likert scale where 1 corresponds to bad and
5 to excellent. We report the results obtained through the
listening test in Table 2.

4.6 Discussion

By briefly inspecting both the objective and subjective re-
sults, reported in Table 1 and 2, respectively, it is clear how
the proposed DiffTransfer model outperforms the Univer-
sal Network and Music-STAR baselines both for what con-
cerns the single and multiple timbre transfer tasks.

When considering single timbre results, DiffTransfer is
able to achieve significantly better performances in terms
of FAD, Jaccard Distance and Perceived Similarity, with
respect to the Universal network. The gap between the two
methods becomes even more evident when considering the

3 https://listening-test-ismir-ttd.
000webhostapp.com/
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Figure 3: Example of Timbre Conversion log mel Spectro-
grams using the DiffTransfer architecture, obtained when
converting Clarinet (a) to Strings (b). The ground truth
Strings spectrogram is shown in (c).

ment algorithms, which views the embeddings as a conti-
nous multivariate Gaussian and is computed between the
real and generated data as

FAD = ||µr � µg||2 + tr(⌃r + µg � 2

p
⌃r⌃g), (4)

where (µr,⌃r) and (µg,⌃g) are the mean and covariances
of the embeddings corresponding to the real and generated
data, respectively. Similarly to [20], we compute FAD in
order to analyze the perceptual similarity between the gen-
erated audios with respect to the ground truth one, corre-
sponding to the original StarNet dataset.

To understand the content-preservation capabilities of
the model, following [35], we compute how the pitch con-
tours of generated ground truth audio tracks are dissimilar,
by calculating the mismatch between two sets of pitches A
and B through the Jaccard Distance

JD(A,B) = 1� |A \B|
|A [B| , (5)

where a lower value corresponds to a lower mismatch and
thus to a higher degree of similarity between the gener-
ated pitch contours. Pitch contours are computed using a
multi-pitch version of the MELODIA [36] as implemented
in the Essentia library [37], rounding pitches to the nearest
semitone. We report the values obtained by computing the
metrics on the test dataset in Table 1.

Objective Evaluation

Method FAD # JD #
Universal Network (single) 7.09 0.53

DiffTransfer (single) 2.58 0.28
Universal Network (single/mixed) 10.47 0.64

DiffTransfer (single/mixed) 4.73 0.46
Music-STAR (mixture) 8.93 0.57
DiffTransfer (mixture) 4.37 0.38

Table 1: Objective Evaluation of the proposed DiffTrans-
fer Method compared to the baselines, in terms of Fréchet
Audio Distance (FAD) and Jaccard Distance (JD). Results
are averaged over all participants and over all the tracks
considered for each part of the test.

4.5 Subjective Evaluation

In order to evaluate subjectively the timbre transfer capa-
bilities, we perform a listening test with 18 human partici-
pants. The web page of the test is available at 3 . The test
was split into two parts corresponding to the single and
multiple instrument application scenarios, respectively.

During the single instrument part of the test, the users
listened to four tracks, corresponding to the four types of
conversions performed, namely: clarinet to strings, strings
to clarinet, piano to vibraphone, vibraphone to piano. Each
example consisted of two conditions, one obtained via the
DiffTransfer model and the other through the Universal
Network.

In the second part of the test, concerning multiple in-
strument timbre transfer, a total of four tracks were consid-
ered, two for the conversion from vibraphone/strings to pi-
ano/strings waveforms and two for the reverse conversion.
Each example consisted of four conditions, namely DiffS-
tar (single/mix), Universal Network (single/mix), DiffStar
(mixture) and Music-STAR (mixture).

Both the order of conditions and the order of examples
in each separate part of the test were randomized.

The participants were asked to rate the conditions in
terms of similarity with respect to the reference track on
a 5 elements Likert scale where 1 corresponds to bad and
5 to excellent. We report the results obtained through the
listening test in Table 2.

4.6 Discussion

By briefly inspecting both the objective and subjective re-
sults, reported in Table 1 and 2, respectively, it is clear how
the proposed DiffTransfer model outperforms the Univer-
sal Network and Music-STAR baselines both for what con-
cerns the single and multiple timbre transfer tasks.

When considering single timbre results, DiffTransfer is
able to achieve significantly better performances in terms
of FAD, Jaccard Distance and Perceived Similarity, with
respect to the Universal network. The gap between the two
methods becomes even more evident when considering the
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Figure 3: Example of Timbre Conversion log mel Spectro-
grams using the DiffTransfer architecture, obtained when
converting Clarinet (a) to Strings (b). The ground truth
Strings spectrogram is shown in (c).

ment algorithms, which views the embeddings as a conti-
nous multivariate Gaussian and is computed between the
real and generated data as

FAD = ||µr � µg||2 + tr(⌃r + µg � 2
p

⌃r⌃g), (4)

where (µr,⌃r) and (µg,⌃g) are the mean and covariances
of the embeddings corresponding to the real and generated
data, respectively. Similarly to [20], we compute FAD in
order to analyze the perceptual similarity between the gen-
erated audios with respect to the ground truth one, corre-
sponding to the original StarNet dataset.

To understand the content-preservation capabilities of
the model, following [35], we compute how the pitch con-
tours of generated ground truth audio tracks are dissimilar,
by calculating the mismatch between two sets of pitches A
and B through the Jaccard Distance

JD(A,B) = 1� |A \B|
|A [B| , (5)

where a lower value corresponds to a lower mismatch and
thus to a higher degree of similarity between the gener-
ated pitch contours. Pitch contours are computed using a
multi-pitch version of the MELODIA [36] as implemented
in the Essentia library [37], rounding pitches to the nearest
semitone. We report the values obtained by computing the
metrics on the test dataset in Table 1.

Objective Evaluation

Method FAD # JD #
Universal Network (single) 7.09 0.53

DiffTransfer (single) 2.58 0.28
Universal Network (single/mixed) 10.47 0.64

DiffTransfer (single/mixed) 4.73 0.46
Music-STAR (mixture) 8.93 0.57
DiffTransfer (mixture) 4.37 0.38

Table 1: Objective Evaluation of the proposed DiffTrans-
fer Method compared to the baselines, in terms of Fréchet
Audio Distance (FAD) and Jaccard Distance (JD). Results
are averaged over all participants and over all the tracks
considered for each part of the test.

4.5 Subjective Evaluation

In order to evaluate subjectively the timbre transfer capa-
bilities, we perform a listening test with 18 human partici-
pants. The web page of the test is available at 3 . The test
was split into two parts corresponding to the single and
multiple instrument application scenarios, respectively.

During the single instrument part of the test, the users
listened to four tracks, corresponding to the four types of
conversions performed, namely: clarinet to strings, strings
to clarinet, piano to vibraphone, vibraphone to piano. Each
example consisted of two conditions, one obtained via the
DiffTransfer model and the other through the Universal
Network.

In the second part of the test, concerning multiple in-
strument timbre transfer, a total of four tracks were consid-
ered, two for the conversion from vibraphone/strings to pi-
ano/strings waveforms and two for the reverse conversion.
Each example consisted of four conditions, namely DiffS-
tar (single/mix), Universal Network (single/mix), DiffStar
(mixture) and Music-STAR (mixture).

Both the order of conditions and the order of examples
in each separate part of the test were randomized.

The participants were asked to rate the conditions in
terms of similarity with respect to the reference track on
a 5 elements Likert scale where 1 corresponds to bad and
5 to excellent. We report the results obtained through the
listening test in Table 2.

4.6 Discussion

By briefly inspecting both the objective and subjective re-
sults, reported in Table 1 and 2, respectively, it is clear how
the proposed DiffTransfer model outperforms the Univer-
sal Network and Music-STAR baselines both for what con-
cerns the single and multiple timbre transfer tasks.

When considering single timbre results, DiffTransfer is
able to achieve significantly better performances in terms
of FAD, Jaccard Distance and Perceived Similarity, with
respect to the Universal network. The gap between the two
methods becomes even more evident when considering the
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• Subjective Evaluation

• Listening test, 18 human participants, 
split into two parts
• Single Instrument timbre transfer
• Multiple instrument timbre transfer

• Conditions rated in terms of similarity 
with respect to reference track on a 1 
(bad) - 5 (Excellent) Likert scale

• Input: 
Clarinet

• Output (DiffTransfer): 
Strings

• Ground Truth: 
Clarinet
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