TIMBRE TRANSFER USING IMAGE-**TO-IMAGE DENOISING DIFFUSION** ISMIR 2:02:3 | Milan, Italy IMPLICIT MODELS Nov. 5-9, 2023 POLITECNICO

Mode

Luca Comanducci, Fabio Antonacci, Augusto Sarti Politecnico di Milano

Context

- **Musical Timbre** is the "perceived characteristics of a musical sound that are different from pitch and amplitude contours"" [1].
- Timbre Transfer consists in converting a preserving the other music-related characteristics.
- Usually performed through generative models such as Generative Adversarial Networks (CycleGAN)
- In this work we apply Denoising Diffusion Models

DiffTransfer

- Timbre transfer achieved through conditional denoising diffusion implicit model
- Log mel-scaled spectrograms converted from one timbre to another while keeping musical content

Denoising Diffusion Implicit Models (DDIMs)

Image and Sound Processing Lab

Diffusion Models convert input samples from a standard Gaussian distribution into samples from an empirical data distribution through iterative denoising process

MILANO 1863

- Forward Process \rightarrow adding noise
- Reverse Process \rightarrow Removing noise (U-Net)

Denoising Diffusion Implicit Models [2]

- Generalize to non-markovian forward diffusion process
- Same training procedure of probabilistic counterpart
- Allow for faster sampling times

Conditioning instrument	Diffusion	

Evaluation

- We use the StarNet dataset [5]
 - Strings-Piano and Vibraphone-Clarinet paired 16 kHz audio tracks
- We compare DiffTransfer with •
 - Universal Network [6]: for single instrument timbre transfer
 - Music-STAR (*mixture-supervised*) model [7]: for multi-instrument timbre transfer
- We consider three timbre transfer tasks
- Single: only single instruments are converted
- Single/mixed: separate conversions of single instruments are mixed in order to create the desired mixture track
- *Mixture*: the mixture is directly converted

Training Procedure •

- DiffTransfer trained for 5000 epochs using batch size 16 with AdamW optimizer
- 6 models trained: vibraphone to piano, piano to vibraphone, clarinet to strings, strings

- At inference time only conditioning instrument is needed
- Model needs to be retrained if type of instruments are changed
- **Objective Evaluation**
 - Fréchet Audio Distance (FAD)[8]: reference-free metric for music enhancement algorithms, measures perceptual similarity between the generated audios with respect to the ground truth one
- Jaccard Distance: perceptual similarity between the generated audios with respect to the ground truth one

• Input: Clarinet

Subjective Evaluation

- Listening test, 18 human participants, split into two parts
 - Single Instrument timbre transfer
 - Multiple instrument timbre transfer
- · Conditions rated in terms of similarity with respect to reference track on a 1

to clarinet, vibraphone/clarinet to piano/strings and piano/strings to vibraphone/clarinet.

Objective Evaluation			
Method	$\mathbf{FAD}\downarrow$	$JD\downarrow$	
Universal Network (single)	7.09	0.53	
DiffTransfer (single)	2.58	0.28	
Universal Network (single/mixed)	10.47	0.64	
DiffTransfer (single/mixed)	4.73	0.46	
Music-STAR (mixture)	8.93	0.57	
DiffTransfer (mixture)	4.37	0.38	

Subjective Evaluation			
Method	Similarit		
Universal Network (single)	1.82		
DiffTransfer (single)	3.68		
Universal Network (single/mixed)	1.69		
DiffTransfer (single/mixed)	3.78		
Music-STAR (mixture)	2.89		
DiffTransfer (mixture)	3.80		

References

- [1] Colonel, Joseph T., and Sam Keene. "Conditioning autoencoder latent spaces for real-time timbre interpolation and synthesis." 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020.
- [2] J. Song, C. Meng, and S. Ermon, "Denoising diffusion implicit models," in International Conference on Learning Representations, 2021.
- [3] Zeghidour, Neil, et al. "Soundstream: An end-to-end neural audio codec." IEEE/ACM Transactions on Audio, Speech, and Language Processing 30 (2021): 495-507.

- [4] Saharia, Chitwan, et al. "Palette: Image-to-image diffusion models." ACM SIGGRAPH 2022 Conference Proceedings. 2022.
 [5] M. Alinoori and V. Tzerpos, "Starnet," Aug. 2022. [Online]. Available: <u>https://zenodo.org/record/6917099</u>
 [6] A.P.Noam Mor, Lior Wold and Y.Taigman, "A universal music translation network," in International Conference on Learning Representations (ICLR), 2019.
- [7] M. Alinoori and V. Tzerpos, "Music-star: a style translation system for audio-based re-instrumentation," in 21st International Society for Music Information Retrieval (ISMIR2022), 2022.
- [8] K. Kilgour, M. Zuluaga, D. Roblek, and M. Sharifi, "Fréchet audio distance: A reference-free metric for evaluating music enhancement algorithms." in INTER- SPEECH, 2019, pp. 2350-2354.