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Our paper targets at low-resource music classifica)on with limited data 
and small models.
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We test the effec)veness of our methods on two different tasks.
• Musical Instrument Classifica)on with OpenMIC
• Baseline model: ResNet with regularized recep)ve field (CP-ResNet)
• Evaluated by mean Average Precision (mAP) and macro F1-score

• Music Auto-Tagging with MagnaTagATune
• Baseline model: Mobile FCN
• Evaluated by mean Average Precision (mAP) and ROC-AUC

Four pre-trained embeddings are used: VGGish, OpenL3, PaSST and 
PANNs.

During training
• Weighted loss: 

• Stage of regulariza)on: penul)mate layer only or all stages
• Distance measures
 1) cosine distance difference
 2) distance correla)on

OpenMIC
VGGish OpenL3 PaSST PANNs

mAP F1 mAP F1 mAP F1 mAP F1
CP ResNet mAP = .819 / F1 = .809
TeacherLR .803 .799 .803 .798 .858 .837 .853 .834
KD .829 .820 .823 .813 .851 .834 .848 .823
EAsTCos-Diff .838 .824 .838 .820 .837 .822 .836 .814
EAsTFinal .842 .828 .835 .822 .847 .830 .849 .828
EAsTAll .836 .823 .835 .822 .845 .827 .845 .827
EAsTKD .836 .825 .836 .821 .852 .834 .857 .831

Table: Results on the OpenMIC dataset (top) and MagnaTagATune dataset 
(boYom). Best performances are in bold, and best results excluding the 
teachers are underlined.

MTAT
VGGish OpenL3 PaSST PANNs

mAP AUC mAP AUC mAP AUC mAP AUC
Mobile FCN mAP = .437 / AUC = .905
TeacherLR .433 .903 .403 .890 .473 .917 .460 .911
KD .447 .911 .439 .907 .454 .912 .448 .909
EAsTCos-Diff .446 .906 .438 .907 .453 .912 .453 .911
EAsTFinal .454 .912 .447 .910 .459 .912 .449 .909
EAsTAll .455 .911 .452 .911 .458 .913 .457 .911
EAsTKD .441 .908 .437 .904 .461 .915 .459 .912

Fig: Comparison of the model complexity.
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Figure: Different ways of knowledge transfer. Blue arrows indicate 
knowledge dis)lla)on or transfer learning. The green arrow indicate our 
approach.
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Baseline: student without regulariza)on
TeacherLR: teacher embeddings + logis)c regression
KD: tradi)onal knowledge dis)lla)on with so\ targets
EAsTCos-Diff : using cosine distance difference to compute loss
EAsTFinal and EAsTAll : using distance correla)on to compute loss
EAsTKD : combine our method with KD 

Figure: Overall pipeline of using audio embeddings as teachers. During 
inference , only the boYom part in blue is used.

Systems for comparison
Figure: Illustra)on of distance measures.

Fig: Results with limited training data on OpenMIC and MagnaTagATune


