Audio Embeddings as Teachers for Music Classification

Yiwei Ding, Alexander Lerch

Introduction Our paper targets at low-resource music classification with limited data and small models. Different ways of knowledge transfer KD Embeddings Data ΤL **Students** Complexity

Figure: Different ways of knowledge transfer. Blue arrows indicate knowledge distillation or transfer learning. The green arrow indicate our

Experimental Setup

Georgia Center for Music Tech Technology

We test the effectiveness of our methods on two different tasks.

- Musical Instrument Classification with OpenMIC
 - Baseline model: ResNet with regularized receptive field (CP-ResNet) ${}^{\bullet}$
 - Evaluated by mean Average Precision (mAP) and macro F1-score ${\bullet}$
- Music Auto-Tagging with MagnaTagATune
 - Baseline model: Mobile FCN

Evaluated by mean Average Precision (mAP) and ROC-AUC ulletFour pre-trained embeddings are used: VGGish, OpenL3, PaSST and PANNs.

Results									
	VGGish		OpenL3		PaSST		PANNs		
OpeniviiC	mAP	F1	mAP	F1	mAP	F1	mAP	F1	
CP ResNet	mAP = .819 / F1 = .809								
Teacher _{LR}	.803	.799	.803	.798	.858	.837	.853	.834	
KD	.829	.820	.823	.813	.851	.834	.848	.823	
EAsT _{Cos-Diff}	.838	.824	.838	.820	.837	.822	.836	.814	
EAsT _{Final}	.842	.828	.835	.822	.847	.830	.849	.828	
EAsT _{All}	.836	.823	.835	.822	.845	.827	.845	.827	
EAsT _{KD}	.836	.825	.836	.821	.852	.834	.857	.831	
MTAT	VGGish		OpenL3		PaSST		PANNs		
	mAP	AUC	mAP	AUC	mAP	AUC	mAP	AUC	
Mobile FCN	mAP = .437 / AUC = .905								
Teacher _{LR}	.433	.903	.403	.890	.473	.917	.460	.911	
KD	.447	.911	.439	.907	.454	.912	.448	.909	
EAsT _{Cos-Diff}	.446	.906	.438	.907	.453	.912	.453	.911	
EAsT _{Final}	.454	.912	.447	.910	.459	.912	.449	.909	
EAsT _{All}	.455	.911	.452	.911	.458	.913	.457	.911	
EAsT _{KD}	.441	.908	.437	.904	.461	.915	.459	.912	

approach.

Methods

Figure: Overall pipeline of using audio embeddings as teachers. During inference, only the bottom part in blue is used.

During training

• Weighted loss:

$$\mathcal{L} = (1 - \lambda)\mathcal{L}_{\mathrm{pred}} + \lambda\mathcal{L}_{\mathrm{reg}}$$

- Stage of regularization: penultimate layer only or all stages
- Distance measures
 - 1) cosine distance difference
 - 2) distance correlation

Student feature map

Teacher embedding

Table: Results on the OpenMIC dataset (top) and MagnaTagATune dataset (bottom). Best performances are in bold, and best results excluding the teachers are underlined.

Figure: Illustration of distance measures.

Systems for comparison

Baseline: student without regularization

Teacher_{LR}: teacher embeddings + logistic regression KD: traditional knowledge distillation with soft targets EAsT_{Cos-Diff}: using cosine distance difference to compute loss EAsT_{Final} and EAsT_{All} : using distance correlation to compute loss EAsT_{KD} : combine our method with KD

Fig: Results with limited training data on OpenMIC and MagnaTagATune

		CONTACT	
cation,"	Yiwei Ding Music Informatics Group		
ı of	Center for Music Technology yding402@gatech.edu		

References

Y.-N. Hung and A. Lerch, "Feature-Informed Embedding Space Regularization for Audio Classific in 2022 30th European Signal Processing Conference (EUSIPCO). IEEE, 2022, pp. 419–423. G. J. Székely, M. L. Rizzo, and N. K. Bakirov, "Measuring and Testing Dependence by Correlation Distances," The Annals of Statistics, vol. 35, no. 6, pp. 2769–2794, 2007.