

Sehun Kim, Kazuya Takeda, Tomoki Toda Nagoya University, Japan

Introduction

Automatic music transcription

- Task to automatically generate musical symbol from audio
- **Objective**: generate playable sheet music

Tokenization of music score

- A way to represent a musical score as a series of note events
- Widely used for tasks such as AMT and music generation

Recent approach : Seq-to-seq network

Learning a musical language model to achieve musical context-aware automatic music transcription

Related works

Tokenization : REMI [Hwang+ 2020]

Express the location of a note in position. First introduced in automatic music generation task

Pos. 0 Bar	Dur. 1.0 Pitch D3	Pitch A3 Pos. 7	Dur. 1.0	Rest 1.0
---------------	----------------------	--------------------	----------	----------

- It requires large amount of data to properly train
- Guitar has less available data than piano.

Performance tends to be extremely poor when the amount of training data is small

AMT system based on Transformer

- A system that only predicts token sequence [Hawthorne+ 2021]
- A system that predicts both token sequence and frame-level pianoroll [Chen+ 2022]

1. Proposal of two data augmentation methods to increase the amount of training data Contribution **2.** Proposal of **Hybrid CTC-Attention model** for automatic guitar transcription which of this research improves transcription performance especially when training with small amounts of data

Proposed method

Data augmentation

Bar overlap (BO)

Preserves musical structure by taking segments in units of bars instead of fixed length, and **shift the window**

Hybrid CTC-Attention model

[Watanabe+, 2017]

Basic structure is similar to the Conformer-Transformer speech recognition model

• Multi-task learning with two types of token estimation with Transformer decoder output and CTC output from Conformer encoder

audio-MIDI pair (PT)

Using an oscillator from MIDI-only data to create a large amount of synthetic audio-MIDI pair data

Pretrain using an artificially created dataset and finetune using a real guitar dataset

Input acoustic feature

→ The **monotonic alignment constraint** of the CTC helps the attention mechanism to learn the proper alignment between input and output, especially when there is only a small amount of data

✓ Experimental evaluation

Dataset

- Data used for data augmentation : Classic guitar MIDI archive
 - MIDI-only classical guitar data set
 - More than 20 hours of data in total
- A dataset with real guitar recordings : GuitarSet [Xi+, 2018]
 - An acoustic guitar dataset composed of Audio-MIDI pairs
 - Six performers, about 3 hours of data in total

Attention map

Experiments done using GuitarSet only to confirm the effectiveness of CTC when training with only a small amount of da We confirmed that introduction of CTC I **Attention mechanis** learn proper alignm

Effect of data augmentation

	Encoder output		Decoder output	
Method	F1 个	TER \downarrow	F1 个	TER 🗸
No data augmentation	0.363	0.469	0.526	0.712
Proposed (BO)	0.512	0.365	0.699	0.441
Proposed (PT)	0.555	0.388	0.630	0.497
Proposed (BO+PT)	0.666	0.307	0.803	0.335

Effect of Hybrid CTC-Attention model

t the Baseline [che helps hent baseline [che Proposed w/ Proposed		Encoder output		Decoder output	
	Method	F1 个	TER 🗸	F1 个	TER \downarrow
	Baseline [Chen+ 2022]	0.767	-	0.603	0.589
	Proposed w/o CTC	-	-	0.784	0.345
	Proposed	0.666	0.307	0.803	0.335