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• Training dataset
• K-means for MusicHubert
• Prediction Target of Music2Vec

3. Pre-training Experiments

1. Introduction

Self-supervised learning (SSL) has shown promising results 
in speech, but its efficacy in music information retrieval 
(MIR) still remains largely unexplored. 
• Applying open-source speech SSL models (data2vec1.0[1]

and HuBERT[2]) to music recordings, referring as 
Music2vec and MusicHuBERT, respectively. 

• We train 12 SSL models with 95M parameters under 13 
different MIR tasks. 

• Identifying weaknesses for further research.

• Masked language model.
• Music2Vec: use a teacher model in the same 

architecture to provide deep features for prediction 
targets in the reconstruction of masked audio.

• MusicHubert: k-means clustering results for MFCCs
features of music audio as reconstruction targets.

• Architecture: a multi-layer 1-D CNN feature extractor, 
and further input these tokens to a 12-layer 
Transformer with dimension 768. 

• We trained these models on 1k hours of 5s music 
audio, with 8 × NVIDIA A100-40GB GPUs around2- 3 
days for 250k steps.

2. Methodology
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4. Results
• Pre-training with music recordings rather than speech can generally 

improve performance on a wide range of MIR tasks, even when the 
models and training are designed for speech.
• some limitations and suggestions for the following pre-training: 
 > emphasis key or harmonic by replacing MFCC features
 > larger number “k” for k-means compared to speech phones. 
 >  different ”k” for pitch and timbre.
• Shortening the audio length can Increase batch diversity, providing 

better performance.
• An improved pre-trained model MERT

https://arxiv.org/abs/2306.00107 
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Discussion of Table 1 ↓
• MusicHuBERT surpasses Music2vec in various tasks
• Pre-training with HuBERT is strongly linked to MFCC features, limiting multi-

pitch information
• Music2Vec is better at learning pitch information, but worse at beat 

tracking.

Discussion of Table 2 ↑
• MusicHuBERT with k=2000 outperforms k=500 for most tasks
• K-means clustering of deep features performs better than vanilla 

MusicHuBERT for most tasks, except pure vocal datasets.
• Increasing the dimension of MFCC doesn't significantly impact most tasks.

Discussion of Table 3 →
• Modifying the prediction target for Music2Vec from the average of 

the top 8 layers to all 12 layers enhances performance across various 
tasks, notably improving key detection.

• The use of audio length cropping for shorter music excerpts is 
introduced to ease modelling difficulties with longer sequences, 
revealing that key detection results may be affected by local versus 
global key differences in shorter segments.
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