1. Introduction

Self-supervised learning (SSL) has shown promising results
in speech, but its efficacy in music information retrieval
(MIR) still remains largely unexplored.

- Applying open-source speech SSL models (data2vecl1.0[1]

and HUBERT[2]) to music recordings, referring as
Music2vec and MusicHUBERT, respectively.

- We train 12 SSL models with 95M parameters under 13
different MIR tasks.

- ldentifying weaknesses for further research.
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Figure 1: Pre-training Paradigms of Selected Models. Both of the models are fed with masked audio inputs and predict

given targets without supervised information.
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2. Methodology

Masked language model.

Music2Vec: use a teacher model in the same
architecture to provide deep features for prediction
targets in the reconstruction of masked audio.
MusicHubert: k-means clustering results for MFCCs
features of music audio as reconstruction targets.
Architecture: a multi-layer 1-D CNN feature extractor,
and further input these tokens to a 12-layer
Transformer with dimension 768.

We trained these models on 1k hours of 5s music
audio, with 8 x NVIDIA A100-40GB GPUs around2- 3
days for 250k steps.

3. Pre-training Experiments

Training dataset
K-means for MusicHubert
Prediction Target of Music2Vec
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: : Table 2: Ablation study on MusicHuBERT hyperparameters (k is the number of MFCC clusters
°  Discussion of Table 1 {, y YPEIp ( ) \
! . MusicHUBERT surpasses Music2vec in various tasks Downstream MTT GS key GTZAN EMO Nsynth Nsynth VocalSet VocalSet GTZAN |Average|
e  Pre-training with HUBERT is strongly linked to MFCC features, limiting multi- dataset Genre Instr pitch tech singer Rhythm | Score
. itch information Metrics ROC AP Refined Acc Acc FEmoy Emoas Acc Acc Acc Acc  F1 (beat)| score '
pitc ) _ _ o _ HuBERT 89.8 364  15.0 648 310 575 682 794 610 5838 835 | 59.8
| * Music2Vec is better at learning pitch information, but worse at beat k=2000 MFCC dim=39 | 90.2 37.7 147 700 421 665 693 774 659 753 886 | 644 o
tracking. k=2000 iter2 90.4 37.5  13.8 683 433 674 700 803 636 704 88.8 | 63.8
o k=500 MFCC dim=39 |89.6 36.1  15.7 645 410 677 667 768  60.5 72.3 875 | 624 l
l Table 1: Experimental performance of the SSL baseline systems on all downstream tasks k=500 MFCC dim=60 | 90.3 38.0 17.6 69.7 408 675 703 790 66.2 75.5 88.6 65.0 .
" M sk O e e om i MoodToeme e Top Discussion of Table 2 T |
xs;lEc;T ROC AP Refined Acc Acc Emoy Emogy Acc Acc Acc Acc  F1 (beat) ROC AP ROC AP ROC AP ROC AP ° MUS|CHUBERT With k=2000 OutperfOrmS k=500 for mOSt taSkS
base 89.8 36.4 15.0 64.8 31.0 57.5 68.2 794 61.0 58.8 83.5 73.2 170 740 11.6 85.0 16.3 81.8 26.5 . .
MusicHuBERT « K-means clustering of deep features performs better than vanilla .
base 90.2 3717 14.7 70.0 42.1 66.5 69.3 774 65.9 753 886 755 178 760 139 86.5 180 824 28.1 .
Tt MusicHUBERT for most tasks, except pure vocal datasets. '
[ ] audio base 88.4 33.6 15.5 60.7 23.0 49.6 69.3 71.7 64.9 74.6 364 73.1 16.9 73.3 11.0 83.5 14.5 80.6 24.8 . . . : . . .
' M| i g w7 w5 s @e  ms @3 @5 @ m1 163 s 22 w2 165 si4 202 * Increasing the dimension of MFCC doesn't significantly impact most tasks. .
SOTA 92.0 [40] 41.4[6] 74.3[28] 82.1[41] 61.7 72.1[6] 78.2[20] 89.2 [23] 65.6 [36] 80.3 [42] 80.6[43] 78.8 20.2[44] 78.6 16.1[23] 87.7 20.3 [44] 84.3 32.1[23]
o Table 3: Ablation study on Music2Vec hyperparameters (span is mask span, prob is mask probability, step is training steps, '
l target=12 uses all 12 transformer layers, and cropSs uses 5s music excerpts) .
DISCUSSIO_n (?f Table 3 9 _ ) Downstream | MTT GS k GTZAN EMO Nsynth Nsynth VocalSet VocalSet GTZAN | Average l
® + Modifying the prediction target for Music2Vec from the average of dataset %Y Genre Instr  pitch  tech  singer Rhythm | Score
| the top 8 layers to all 12 layers enhances performance across various Metrics ROC AP Refined Acc Acc FEmoy Emos Acc Acc  Acc  Acc  Fl (beat)| score .
: : : data2vec | 884 33.6 155 60.7 230 496 693 777 649 746 364 | 552
tasks, notably improving key detection.
. ’ y ) P & KEY , _ _ vanilla 89.1 351  19.0 597 385 619 694 889 683 695 335 | 578 |
* The use of audio length cropping for shorter music excerpts is span=5 873 320 157 476 227 412 642 848 567 538 332 | 497
| introduced to ease modelling difficulties with longer sequences, span=15 | 887 343 164 566 390 588 671 8.1 631 619 331 | 552 °
line that kev detecti It be affected by local prob=50 88.5 340 237 593 406 550 668 877 649  61.7 33.9 | 56.3
o revealing that key detection results may be atrected by local versus prob=80  |882 339 184 503 367 557 679 889 642 652 337 | 55.1 ]
global key differences in shorter segments. step=800k | 87.7 32.7  20.3 545 349 473 669 875 656  65.1 334 | 55.0
\ target=12 [ 89.7 352 265 645 417 642 711 892 710 732 341 | 60.6 ’
. crop5s 90.0 36.6 185 766 534 71.6 683 889 713 724 339 | 618
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4. Results
Music2Vec & * Pre-training with music recordings rather than speech can generally
MERT Model improve performance on a wide range of MIR tasks, even when the
Released Here o :
models and training are designed for speech.
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* some limitations and suggestions for the following pre-training:

> emphasis key or harmonic by replacing MFCC features

> larger number “k” for k-means compared to speech phones.

> different "k” for pitch and timbre.

* Shortening the audio length can Increase batch diversity, providing
better performance.

* An improved pre-trained model MERT
https://arxiv.org/abs/2306.00107

Zhang in the preliminary stage.
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