A Repetition-based Triplet Mining Approach for Music Segmentation

Morgan Buisson^{1,4}, Brian McFee^{2,3}, Slim Essid¹, Hélène C. Crayencour⁴

¹ LTCI, Télécom Paris, Institut Polytechnique de Paris, France
² Music and Audio Research Laboratory, New York University, USA
³ Center for Data Science, New York University, USA
⁴ L2S, CNRS-Univ.Paris-Sud-CentraleSupélec, France

Contributions

The notion of repetition is tightly linked to musical structures and has not been explicitly considered by previous self-supervised methods for audio representation learning and music segmentation. In this work we propose:

- An **unsupervised** triplet mining method to learn audio representations for music segmentation.
- We leverage **repeating sequences** inside the input track to select relevant sets of frames to train a deep neural network with a triplet loss.
- Our approach returns more **informative** triplets, which enhances the learned representations.
- The output embeddings significantly improve both **boundary detection** and **section grouping** results against comparable previous work.
- We provide further insight on the relationship between the **nature of the repetitions** leveraged and the **music genre** employed for testing.

Method Overview

For each track in the training set (non-annotated):

1. Calculate MFCC and Chroma features, convert to time-lag features

Sampling matrices

Positive sampling matrix: A dilation operation is applied to the matrix \mathbf{S} to enlarge these detected regions of repetition. A two-dimensional Gaussian kernel G of size K is convolved with \mathbf{S} :

$$\mathbf{S}_P = \mathbf{S} * G,\tag{3}$$

The size of the kernel K was set to K = 8 (beats), providing a good balance between the amount of dilation and its alignment with segment boundaries, as it blurs repetitions over 2 bars when songs follow a 4/4 time signature.

Negative sampling matrix: The negative sampling matrix \mathbf{S}_N is obtained by applying an exponential decay to $1 - \mathbf{S}_P$ such that:

$$\mathbf{S}_N(i,j) = (1 - \mathbf{S}_P(i,j))e^{-\lambda \max\left(\frac{|i-j|}{N}, \mathbf{S}_P(i,j)\right)},\tag{4}$$

where $\lambda > 0$ is a parameter that defines the strength of the smoothing. Components near the main diagonal of \mathbf{S}_N receive greater values than those close the opposite edges, thus favoring frames located within consecutive segments of that of the anchor.

- 2. Calculate their respective self-similarity matrices S_M and S_C
- 3. Linear combination matrix $\mathbf{S} = \gamma \mathbf{S}_M + (1 \gamma) \mathbf{S}_C, \gamma \in [0, 1]$
- 4. Filtering operation and diagonal enhancement of ${\bf S}$
- 5. Dilation operation on S to obtain the positive sampling matrix S_P
- 6. Exponential decay on $1 \mathbf{S}_P$ to obtain the negative sampling matrix \mathbf{S}_N
- 7. For any frame randomly chosen, select positive example by querying the matrix \mathbf{S}_P and the negative with \mathbf{S}_N

Time-lag self-similarity matrices

Figure 1. Time-lag self-similarity matrices \mathbf{S}_M and \mathbf{S}_C respectively.

$$M(i,j) = \begin{cases} \exp\left(-\frac{d(\tilde{\mathbf{X}}_i, \tilde{\mathbf{X}}_j)}{b}\right), & \tilde{\mathbf{X}}_j \in \mathrm{NN}_{\mathrm{k}}(\tilde{\mathbf{X}}_i) \\ 0, & \tilde{\mathbf{X}}_j \notin \mathrm{NN}_{\mathrm{k}}(\tilde{\mathbf{X}}_i) \end{cases}$$

where $\tilde{\mathbf{X}}_i$ are time-lag features, d(x, y) is the euclidean distance, b the bandwidth parameter, $NN_k(x)$ denotes the k-nearest neighbors of x and i, j = 1, ..., N.

Combination of timbral and harmonic repetitions

The matrix ${\bf S}$ is then obtained by linear combination, such that:

Figure 3. Positive (left) and negative sampling matrices (right) \mathbf{S}_P and \mathbf{S}_N .

Segmentation evaluation

- Training set: 20,000 non annotated audio tracks, splits of 10%, 50% and 100%.
- Test datasets: SALAMI [1] and JSD [2].
- Downstream segmentation and section grouping performed with spectral clustering [3].
- Evaluation metrics: HR.5F, HR3F (Hit-Rate F-measures with .5 and 3 second tolerance windows), F-measure of frame pairwise clustering (PFC) and normalized conditional entropy score (NCE).
- **Baselines**: spectral clustering [3] applied on positive sampling matrix (LSD) and temporal sampling [4].

Method (Split)	HR.5F	HR3F	PFC	NCE
LSD Temp. (10%) [4] Ours (10%) Temp. (50%) [4] Ours (50%) Temp. (100%) [4]	.195 .280 .291 .288 .296 .284	.486 .665 .676 .671 .682 .670	.707 .770 .777 .773 .778 .778 .773	.682 .677 .691 .678 .690 .678
Ours (100%)	.297	.683	.781	.694

Table 1. Flat segmentation results on SALAMI (*upper* annotations). Results in bold denote statistically significant improvement over *temporal sampling* on same split (denoted as *Temp*.).

Method (Split)	HR.5F	HR3F	PFC	NCE
Temp. (10%) [4]	.221	.568	.739	.745
Ours (10%, $\gamma = 0.9$)	.223	.585	.743	.750
Temp. (50%) [4]	.243	.586	.763	.766
Ours (50%, $\gamma = 0.9$)	.234	.607	.769	.772

 $\mathbf{S} = \gamma \mathbf{S}_M + (1 - \gamma) \mathbf{S}_C,$

where $\gamma \in [0, 1]$ weights the contributions of each feature type.

Figure 2. Repetition matrix ${f S}$ (left) and reference self-similarity matrix (right).

We first set $\gamma = 0.5$: equal weight to timbral and harmonic features is given.

Table 2. Flat segmentation results on JSD (*chorus* annotation level) with emphasis on timbral features ($\gamma = 0.9$). Results in bold denote statistically significant improvement over *temporal sampling* (denoted as *Temp.*) on same split.

Conclusion

- Boundary detection and structural grouping improved in a significant manner on all splits.
- Better triplets generated, improves the training signal and convergence.
- Influence of balance parameter γ :
 - Emphasizing timbral content: "non-repeating" structure types (Jazz).
 - More weight on harmonic content: better for repetition-based structures (Pop, Rock).

References

- [1] Jordan Bennett Louis Smith et al. "Design and creation of a large-scale database of structural annotations.". In: ISMIR. 2011.
- [2] Stefan Balke et al. "JSD: A Dataset for Structure Analysis in Jazz Music". In: Transactions of the International Society for Music Information Retrieval 5.1 (2022).
- [3] Brian McFee and Dan Ellis. "Analyzing Song Structure with Spectral Clustering.". In: *ISMIR*. 2014.
- [4] Matthew C McCallum. "Unsupervised learning of deep features for music segmentation". In: *ICASSP*. 2019.

Github: github.com/morgan76/Triplet_Mining

Poster Session ISMIR 2023

(1)

(2)

morgan.buisson@telecom-paris.fr