
BPS-Motif:

A Dataset for Repeated Pattern Discovery of Polyphonic Symbolic Music

Yo-Wei Hsiao, Tzu-Yun Hung, Tsung-Ping Chen, and Li Su* Institute of Information Science, Academia Sinica, Taiwan

BPS-motif is a new symbolic music dataset containing the note-level annotation of motives and occurrences in the first movements of Beethoven's Piano Sonatas (BPS).

Background

- Repetition: ubiquitous & multi-fold existence in music
- A pattern: a group of notes that
 - 1. Is musically important
- 2. Occurs multiple times in music.
- Challenges of pattern discovery:
- 1. High computational complexity
- 2. Tend to find redundant and insignificant patterns
- 3. A large pattern can be potentially divided into small ones
- 4. Subjectivity regarding repetition, similarity, and musical importance
- Our contribution: new dataset and new motif discovery algorithm
- 1. Thematic pattern annotation (i.e., themes, phrases, sections): provided in the BPS-FH dataset (Chen et al., 2018)
- 2. BPS-motif: the largest dataset with motivic pattern annotation for intra-opus motif discovery

Proposed dataset

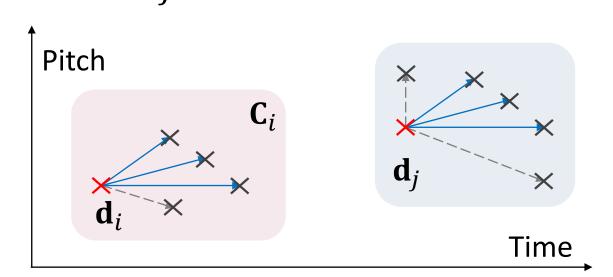
- 32 first movements
- 263 distinct motives with 4,944 occurrences in total
- **36,652 motif notes** (28.87% of the total number of 126,943 notes)
- Average 8.22 motives and 154.5 occurrences per music piece
- Average 7.41 notes per motif
- Annotation process: 2 annotators and 7 external reviewers, with a review and discussion phase
- Responses to review questions:

totally reasonable
(2) mostly reasonable (5)

Q2: Are the annotations coherent with your opinion?

totally coherent
(2) mostly coherent (5)

Q3: Did we hold consistent criteria annotating the data?


totally consistent (3) mostly consistent (4)

Q4: In which way your opinions are different from ours?

under-seg
(1) over-labeling (2) under-lab
(1)

Motif discovery algorithm

- A music piece $\mathbf{D} \coloneqq \{\mathbf{d}_i\}_{i=1}^N$, $\mathbf{d}_i \coloneqq (o_i, p_i)$ denotes the ith note, and o_i , p_i denote its onset and pitch value
- SIATEC algorithm (Meredith et al., 2002): finds all the translational equivalence class (TEC) of the available maximal translatable patterns (MTPs) in \mathbf{D} : MTP(\mathbf{v} , \mathbf{D}) := $\max\{\mathbf{d}: \mathbf{d} \in \mathbf{D} \text{ and } \mathbf{d} + \mathbf{v} \in \mathbf{D}\}$
- Common structure (proposed):
 - 1. A segment as a set of vectors
- 2. The common structure of two segments: the vectors which exist in both segments (blue vectors)
- 3. The most common structure for some \mathbf{d}_i w.r.t \mathbf{d}_i : two occurrences

Data	Algorithm	P(est)	R(est)	F(est)	P(occ)	R(occ)	F(occ)	P(thr)	R(thr)	F(thr)	Runtime (s)
BPS-motif	SIATEC	0.1804	0.6444	0.2803	0.2102	0.2771	0.2235	0.0408	0.2994	0.0713	28.5082
	Proposed	0.5709	0.8339	0.6733	0.1491	0.4174	0.2002	0.1222	0.2644	0.1646	119.533
JKU-PDD	SIATEC	0.1238	0.4630	0.1920	0.5248	0.3970	0.4437	0.0706	0.4006	0.1176	1.5099
	Proposed	0.2649	0.5002	0.3406	0.4208	0.5105	0.3948	0.1096	0.3003	0.1561	4.0546