

Stabilizing Training with Soft Dynamic Time Warping: A Case Study for Pitch Class Estimation with Weakly Aligned Targets

Johannes Zeitler, Simon Deniffel, Michael Krause, and Meinard Müller

Summary

Training instabilities when training on weakly aligned targets with soft dynamic time warping (SDTW) loss

Soft Dynamic Time Warping (SDTW) [1]

argets

Predictions X

 $\nabla_C \text{SDTW}^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p_C^{\gamma}(A) A$

Set of all possible

 $\mathcal{A}_{N,M} \subset \{0,1\}^{N \times M}$

alignment matrices

Experiments & Evaluation

CNN-based pitch class estimation from classical music

Prediction sequence length 500

Average weak target sequence length ≈ 25

Inspect soft alignments $E^{\gamma}(C)$

F-measure

Standard SDTW & Stabilizing Strategies

Standard SDTW

- Poor prediction accuracy in the early training stages
- Noisy cost matrix C
- Collapsed or blurry soft alignments $E^{\gamma}(C)$
- Erroneous gradient updates, training diverges

Hyperparameter scheduling

- Increase initial softmin temperature γ
- Blurry alignments partially overlap with the reference Reduce γ at a later training stage for sharp ulletalignments

Diagonal prior

Penalize off-diagonal elements in the computation of the soft alignment matrix

Sequence unfolding

- Uniformly stretch target sequence to length of predicted sequence
- Diagonal step is cheaper than "around corner"

[1] Marco Cuturi and Mathieu Blondel, "Soft-DTW: a differentiable loss function for time-series," ICML 2017

