1. Overview

We propose LyricWhiz, the first automatic lyrics transcription
system that can perform zero-shot, multilingual, long-form

lyrics transcription.

In LyricWhiz, Whisper functions as the “ear”
transcribing the audio; ChatGPT serves as the “brain” <,
acting as an annotator with a strong performance for
contextualized output selection and correction (Fig. 1).

We further use LyricWhiz to construct a large-scale
multilingual lyric transcription dataset, Mullam.
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please analyze my
lyrics predictions and
ick the best one

Q’ﬁmugﬁ the darkness and good times
I know Imake it through......
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Figure 1: Concept illustration of the working LyricWhiz.
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Figure 2: Framework of the proposed LyricWhiz.
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Table 2: The WERs (%) of various ALT systems,

including ablation methods, on multiple datasets.
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2. Methodology

LyricWhiz integrates two large-scale
pre-train models from OpenAl --
Whisper and ChatGPT (Fig. 2).

Whisper - Zero-shot Lyrics Transcriptor

Whisper, trained on speech data,
excels in lyrics transcription within the
music domain.

We use the input prompt “lyrics:” as a
prefix to guide it toward the ALT task.
We leverage the no speech probability
predicted by Whisper and drop
predicted lines of lyrics with a no
speech probability greater than 0.9.
We generate 3 - 5 predictions for each
input music under identical settings.

ChatGPT - Effective Lyrics Post-processor

We assign ChatGPT the role of a lyrics
transcription post-processor.

We stipulate that both input and
output should be in JSON format.
Inspired by Chain-of-Thought in LLMs,
we decompose lyrics post-processing
into three consecutive phases - analyze,
make a choice, and output.

4. Results
* LyricWhiz significantly reduces Word

Error Rate on various ALT benchmark
datasets such as Jamendo and Hansen.

e Ablations indicate that both Whisper

prompt and ChatGPT ensemble are
essential for model performance.

 We manually create a multilingual test

set of 40 songs for noise level estimation.

e Our model achieves decent WER

without any post-processing tricks.



