
Composer’s Assistant: An Interactive
Transformer for Multi-Track MIDI Infilling

Martin E. Malandro 1

1Sam Houston State University

Problem: Multi-track MIDI infilling

Replace
some
track-
measures
with
empty
items

Learn to
fill the
empty
items

Motivation and Approach

Motivation: Create a tool that composers can (and want to) use
Approach:

T5 [4]-like encoder-decoder transformer model with DAW integration

Custom token-based language that allows for straightforward masking of track-measures
Novel data pipeline:

Code to dedupe a dataset of MIDI files. (ex: 42% of Lakh MIDI dataset files in the “f” folder also exist in
other folders.) Deduping code is based on musical content—specifically, coarsely quantized note onset
chromagrams, transposed to all 12 keys. This helps catch duplicate pieces of music that differ in grid
resolution and/or key.
Code for identifying and removing “free-flowing performance” MIDI files (which do not respect the
underlying grid) from the dataset. This helps prevent the model from learning to produce mis-quantized
outputs.
To perform this filtering, given a MIDI file M , we quantize the note onsets in M to a resolution of 12 ticks
per quarter note, and we form a length-12 vector vM whose ith entry (i ∈ {0, . . . , 11}) is the number of
note onsets in M occurring i ticks after a grid quarter note. The idea is that if the note onsets in M have
nothing to do with the grid, then vM will point in a similar direction to the uniform vector
v1 = (1, . . . , 1) ∈ R12. We therefore compute the cosine of the angle θM between vM and v1 and we
declare a threshold T such that when cos(θM) > T we remove the file M from our dataset. Hand
exploration indicated that T = 0.8 was a reasonable threshold.
Code for identifying and removing “delay” tracks within MIDI files:
Given tracks T1, T2 within a MIDI file, we define an “overlap measure” O(T1, T2) that measures the
percentage of note intervals in the larger of the two tracks accounted for by the note intervals in the
smaller. We use a threshold of 0.9 for asserting near-overlap between two tracks. As we go through the
tracks in a MIDI file in order, a later track T is thrown out if there exists an earlier track T0 using the same
instrument such that some shift Ts of T of no more than a half note has O(T0, Ts) ≥ 0.9.

Copyright free/permissively-licensed training set: See acknowledgments at our github.

Quantization that is sufficiently fine for score generation: Our grid accommodates 32nd notes
and 16th note triplets.

Code supports finetuning by end users: A video card with 6 GB RAM can train on inputs and
outputs of length ≤ 1024, and a video card with 12 GB RAM can train on inputs and outputs
of length ≤ 1650. Several composers have personalized CA for themselves this way.

Many Useful Applications

Add accompaniment: Continue a song (MuseNet [5]-style):

Connect two parts of a song: Add a drum fill:

Large Project? No Problem.

Feature Comparison with Work by Other Authors

Composer’s Assistant MMM [2, 3] (Colab) MusIAC [1] (Colab)
bars any 4 or 8 16
tracks any 12 or 6 3
Time signatures allowed 1/16 thru 8/4 4/4 4/4, 3/4, 2/4, 6/8
Quantization Mixed grid; supports 32nd note triplets (which 16th notes

32nd notes and 16th also supports 16th notes
note triplets and 16th note triplets,

but not 32nd notes)
Training Set Copyright-free / Lakh Lakh

permissively licensed
User controls Mono/poly switches Note density 5 (3 track-level,

2 bar-level)

Model Evaluation

Task CA CA (no mono/poly) MMM-8 MMM-4
Note F1 results. Higher is better.

8-bar random infill 0.5414 ± (0.1887)a 0.5315 ± (0.1904)b 0.4153 ± (0.1819)c 0.4025 ± (0.165)d

16-bar random infill ∗ 0.5771 ± (0.1661)a 0.5705 ± (0.1669)b 0.4133 ± (0.1534)c 0.4059 ± (0.139)d

8-bar track infill 0.179 ± (0.1902)a 0.1634 ± (0.18)b 0.1063 ± (0.1573)d 0.1427 ± (0.164)c

16-bar track infill 0.1773 ± (0.1752)a 0.1609 ± (0.165)b 0.1107 ± (0.1383)d 0.1467 ± (0.148)c

8-bar last-bar fill 0.5019 ± (0.2719)a 0.5063 ± (0.2751)a 0.4329 ± (0.2445)b 0.3756 ± (0.228)c

16-bar last-bar fill ∗ 0.5415 ± (0.2853)a 0.539 ± (0.2823)a 0.4338 ± (0.2468)b 0.3818 ± (0.229)c

Pitch class histogram entropy difference results. Lower is better.
8-bar random infill 0.2845 ± (0.1627)a 0.2948 ± (0.1597)b 0.3045 ± (0.1561)c 0.3049 ± (0.149)c

16-bar random infill 0.2691 ± (0.1325)a 0.2797 ± (0.1326)b 0.3093 ± (0.124)c 0.3063 ± (0.113)c

8-bar track infill 0.3933 ± (0.3032)c 0.42 ± (0.3134)d 0.2864 ± (0.2966)a 0.3021 ± (0.251)b

16-bar track infill 0.3842 ± (0.2654)c 0.3995 ± (0.2763)c 0.284 ± (0.2348)a 0.3036 ± (0.207)b

8-bar last-bar fill 0.3018 ± (0.2661)a 0.3072 ± (0.2692)a 0.3213 ± (0.2602)b 0.3439 ± (0.277)c

16-bar last-bar fill ∗ 0.2851 ± (0.2652)a 0.2925 ± (0.2672)a 0.3209 ± (0.2619)b 0.3454 ± (0.274)c

Groove similarity results. Higher is better.
8-bar random infill 0.9534 ± (0.0298)a 0.9519 ± (0.0306)b 0.9333 ± (0.0369)c 0.9314 ± (0.036)d

16-bar random infill ∗ 0.956 ± (0.027)a 0.9552 ± (0.0275)b 0.9323 ± (0.0337)c 0.9317 ± (0.03)c

8-bar track infill 0.9115 ± (0.0592)a 0.9069 ± (0.0617)b 0.8921 ± (0.0695)d 0.8987 ± (0.062)c

16-bar track infill 0.9113 ± (0.0547)a 0.9082 ± (0.0553)b 0.8946 ± (0.0561)d 0.9011 ± (0.053)c

8-bar last-bar fill 0.9517 ± (0.0414)a 0.9524 ± (0.0411)a 0.9381 ± (0.045)b 0.9334 ± (0.045)c

16-bar last-bar fill ∗ 0.9544 ± (0.0481)a 0.9542 ± (0.0424)a 0.938 ± (0.051)b 0.9339 ± (0.047)c

Table 1. Objective infilling summary statistics. All cells are of the form mean ± (std dev)s, where s is a letter.
Different letters within a row indicate significant location differences (p < 0.01) in the samples for that row
according to a Wilcoxon signed rank test with Holm-Bonferroni correction. Asterisks (∗) indicate a significant
performance difference (p < 0.01) between a 16-bar task and the 8-bar task in the previous row for our model
according to a Wilcoxon rank sum test.

Real Music Our Model MMM
1st place 66 32 27
Avg rank 1.664 2.032 2.304

p-values Our Model MMM
MMM 0.0239 -
Real Music 0.0034 2.3 · 10−5

Table 2. Subjective results from our listening test.

Selected References

R. Guo et al. “MusIAC: An Extensible Generative Framework for Music Infilling Applications with
Multi-level Control”. In: Artificial Intelligence in Music, Sound, Art and Design. EvoMUSART
2022. Lecture Notes in Computer Science. Vol. 13221. Springer, Cham, 2022, pp. 341–356.

J. Ens and P. Pasquier. “MMM : Exploring Conditional Multi-Track Music Generation with the
Transformer”. In: arXiv preprint arXiv: 2008.06048 (2020).

J. Ens and P. Pasquier. “Flexible Generation with the Multi-Track Music Machine”. In: Extended
Abstracts for the Late-Breaking Demo Session of the 21st Int. Society for Music Information
Retrieval Conf. Montréal, Canada, 2020.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer”. In:
Journal of Machine Learning Research 21.140 (2020), pp. 1–67.

C. Payne. MuseNet. openai.com/blog/musenet. Apr. 25, 2019.

openai.com/blog/musenet

