From West to East: Who can understand the music of the others better?

Charilaos Papaioannou NTUA, QMUL cpapaioan@mail.ntua.gr

Emmanouil Benetos QMUL emmanouil.benetos@gmul.ac.uk Alexandros Potamianos NTUA potam@central.ntua.gr

Highlights

Existing music audio embedding models can be used to transfer or learn representations to "non-Western" cultures

The inverse transfer direction, utilizing learned representations from non-Western datasets, can be beneficial for Western target domains

The aggregation of all the cross-domain knowledge transfers can **provide insights about the similarities between the domains**, seeking to answer the question of the paper

1. Datasets

Western

</>

- MagnaTagATune: 210 hours top-50 tags
- FMA-medium: 208 hours top-20 hierarchical genres

Eastern Mediterranean

- Lyra (Greek folk): 80 hours top-30 tags
- Turkish-makam: 215 (out of 359) hours top-30 tags

Indian

- Hindustani: 206 (out of 343) hours top-20 tags
- Carnatic: 218 (out of 503) hours top-20 tags

MagnaTa	gATune	FMA-me	dium	Lyra			
Guitar	18.76%	Rock	28.419	% Voice	76.21%		
Classical	16.52%	Electronic	25.269	% Traditional	76.05%		
Slow	13.71%	Punk	13.289	% Violin	57.34%		
Techno	11.42%	Experimenta	1 9.00%	6 Percussion	53.71%		
Strings	10.55%	Hip-Hop	8.80%	6 Laouto	51.69%		
Drums	10.05%	Folk	6.08%	6 Guitar	37.34%		
Electronic	9.74%	Garage	5.67%	6 Klarino	31.05%		
Rock	9.17%	Instrumental	5.40%	6 Nisiotiko	26.85%		
Fast	8.92%	Indie-Rock	5.17%	6 Place-None	25.16%		
Piano	7.95%	Рор	4.74%	6 Bass	24.76%		
Turkish-makam		Hindustani		Carnatic			
Voice	63.33%	Voice 8	33.90%	Voice	82.35%		
Kanun	31.09%	Tabla 5	53.03%	Violin	78.45%		
Tanbur	27.93%	Khayal 4	41.33%	Mridangam	75.65%		
Ney	27.56%	Harmonium 3	39.25%	Kriti	70.87%		
Orchestra	26.38%	Teentaal	35.35%	Adi	51.88%		
Oud	24.36%	Tambura 2	27.88%	Ghatam	30.32%		
Kemence	22.79%	Ektaal 2	21.58%	Khanjira	17.65%		
Cello	17.83%	Pakhavaj	7.88%	Rupaka	11.98%		

Model	VGG-ish		Musi	cnn	AST		
Metric /	POC AUC	DD AUC	POC AUC	DD ALIC	POC AUC	DD ALIC	
Dataset	KUC-AUC	FK-AUC	KUC-AUC	FK-AUC	KOC-AUC	FK-AUC	
MagnaTagATune	0.9123	0.4582	0.9019	0.4333	0.9172	0.4654	
FMA-medium	0.8889	0.4949	0.8766	0.4473	0.8886	0.5024	
Lyra	0.8097	0.4806	0.7391	0.4042	0.8476	0.5333	
Turkish-makam	0.8696	0.5639	0.8505	0.5299	0.8643	0.5669	
Hindustani	0.8477	0.6082	0.8471	0.6016	0.8307	0.5786	
Carnatic	0.7392	0.4278	0.7496	0.4182	0.7706	0.4394	

TABLE 2. Model performance on single domain auto-tagging tasks

3. Cross-cultural Music Transfer Learning

- Transfer of a trained model from to a target domain and **fine-tuning** of the **output layer** or of the **whole network**
- Aggregation of all knowledge transfer results to specify which source is the best candidate for each target dataset and derive insights about domain similarity

Target domain	Magna	FagATune	FMA-n	nedium	Ly	ra	Turkish	i-makam	Hindu	istani	Carr	natic
trainable layer(s) /	output	all	output	all	output	all	output	all	output	all	output	all
Source domain												
					/GG-isl	1						
MagnaTagATune	-	91.23	88.11	92.39	74.69	85.40	76.79	86.84	76.09	85.04	67.19	74.71
FMA-medium	85.82	91.29	-	88.89	68.56	84.04	75.40	87.78	75.77	84.39	67.03	74.56
Lyra	84.34	90.93	82.84	92.10	-	80.97	76.98	87.21	77.41	84.24	67.30	73.52
Turkish-makam	85.19	90.90	84.41	91.74	70.93	82.38	-	86.96	77.54	85.32	67.16	73.50
Hindustani	84.24	91.02	83.83	91.91	66.27	79.71	77.25	87.63	-	84.77	66.72	74.63
Carnatic	84.18	91.00	82.62	91.73	61.59	76.72	77.07	87.40	78.19	84.81	-	73.92
				I	Musicni	1						
MagnaTagATune	-	90.19	87.34	91.03	71.79	78.74	74.72	85.96	75.87	84.18	66.12	75.57
FMA-medium	85.52	90.35	-	87.66	65.94	77.59	75.51	85.13	73.16	85.49	66.38	75.77
Lyra	81.38	90.03	82.23	90.80	-	73.91	74.11	85.20	78.10	83.29	65.09	75.51
Turkish-makam	84.35	90.11	83.79	90.81	61.87	79.83	-	85.05	75.67	83.75	67.49	74.09
Hindustani	82.38	89.86	83.42	90.85	64.48	78.95	74.60	85.58	-	84.71	65.25	76.95
Carnatic	83.02	90.05	82.78	90.74	61.83	77.92	75.09	85.43	75.34	84.19	-	74.96
AST												
MagnaTagATune	-	91.72	89.25	91.99	75.68	83.77	76.28	87.20	74.67	86.57	66.03	75.43
FMA-medium	88.63	91.62	-	88.86	65.72	82.17	76.37	87.43	74.51	85.76	67.33	75.98
Lyra	87.49	91.44	87.44	92.43	-	84.76	77.08	86.80	72.24	83.73	68.47	76.59
Turkish-makam	87.33	91.40	86.31	91.95	72.70	77.95	-	86.43	70.13	83.56	67.10	75.23
Hindustani	87.40	91.35	87.11	92.26	71.74	84.60	75.70	86.90	-	83.07	67.75	75.85
Carnatic	87.42	91.45	86.83	91.75	63.33	81.44	76.87	87.14	74.11	82.91	-	77.06

TABLE 3. ROC-AUC scores (%) when applying transfer learning across all models and domains

	MagnaTag- ATune	FMA- medium	Lyra	Turkish- makam Hindustani Carnatic			
MagnaTag- ATune	_	0.89	0.9	0.54	0.64	0.49	
FMA- medium	1.0	_	0.44	0.59	0.48	0.6	
Lyra	0.17	0.37	_	0.39	0.39	0.59	
Turkish- makam	0.35	0.19	0.52	_	0.44	0.37	

FIG 1. Cross-cultural music transfer learning results. **Rows** correspond to the **source** datasets and **columns** to the **target** dataset. The value of each cell (knowledge transfer) is **normalized and averaged** across all models

TABLE 1. Relative frequencies of the top-10 tags

2. Models

Violin

Hicaz

17.62% Sarangi

10.63% Dhrupad

• VGG-ish: 7-layer CNN with 3×3 filters and 2×2 maxpooling, followed FC layers – mel-specs of 3.69sec length

7.30% Mishra chapu 7.27%

7.05% Tana Varnam 5.21%

- Musicnn: vertical and horizontal convolutional filters to capture timbral and temporal features followed by dense layers – mel-specs of 3sec length
- Audio Spectrogram Transformer: 16×16 patches of input, trainable positional embeddings, encoder part of the Transformer – mel-specs of 8sec length

4. Conclusions

- State-of-the-art models can benefit from knowledge transfer not **only from** Western to non-Western cultures but also the opposite too
- Transfer Learning results can be interpreted to a degree as a similarity metric between the music cultures

National Technical University of Athens

