# **Mono-to-stereo Through Parametric Stereo Generation**

Joan Serrà, Davide Scaini, Santiago Pascual, Daniel Arteaga, Jordi Pons, Jeroen Breebaart, & Giulio Cengarle

### Dolby Laboratories

### INTRODUCTION

Upmixing from mono to stereo is still a need

- Historical or originally mono recordings
- "No-width" stereo recordings (e.g., mobile phone)
- Mono-based processing (including deep learning)

The music stereo image, a great generative task!

- Highly creative/artistic (e.g., instrument panning)
- Highly subjective  $\rightarrow$  One-to-many mapping

#### Existing approaches

- Based on decorrelation (time delays, all-pass filters, etc.)
  - Limited effect/width
  - Cannot spatially separate individual elements in the mix
- Based on source separation
  - Artifacts + Restrictive (e.g., number and types of sources)
  - Need automatic post-processing (e.g., stereo sources, panning)

ML Model – Generative

- Autoregressive (PS-AR) [2]
  - Transformer-based (BERT [3]), conditioned on mono spectrogram \_\_\_\_

$$\mathbf{H} = \phi(\mathbf{S}) + \sum_{i=1} \xi_i(\mathbf{Q}_{i,:}),$$

Classifier-free guidance + Weighted loss \_\_\_\_

 $\mathbf{U} = (1+\gamma)\mathbf{U}^{\text{cond}} - \gamma\mathbf{U}^{\text{uncond}}, \qquad w = 1 + \lambda\sigma\left(\left[\mathbf{P}^{\text{IID}}\right]_{\pm\epsilon}\right) + \sigma(\mathbf{P}^{\text{IC}}),$ 

- Masked token modeling (PS-MTM)
  - Same setup as PS-AR
  - Sampling based on MaskGIT [4]



### **CONTRIBUTIONS**

- Model it as a **generative problem**!
- We propose to upmix in the **parametric stereo** space
- We propose to leverage machine learning techniques
  - Classical: nearest neighbor(s)
  - Deep learning: autoregressive and masked token modeling Ο approaches
- Objective **measures** and subjective **protocol**
- Discussion

## **METHOD**

### Parametric Stereo (PS) [1]



2000 -

1000

- Classic coding technique (transmit mono audio + parameters)
- Parameters are frame-based and multi-band
- Based on channel intensity difference (IID) and channel correlation (IC)
- Ouantized





### RESULTS

#### Preliminary: Regression vs. Generative



### Subjective Evaluation: Expert Listeners



If done right, almost inaudible artifacts



250

300

150

200

50

100

STFT

50 100 150 200 250 300 350 400

- 0

350 400

-50

#### **PS** Generation



#### ML Model – Classic

- Nearest neighbor (PS-NN)
  - For each frame (+ context), retrieve most similar from training data, using spectral energies for similarity
  - Take the corresponding PS parameters as prediction
  - Smooth the obtained PS parameter sequence

Figure 1. Preference results for the items included in the subjective test (Sec. 4.3). Markers indicate average values and vertical bars indicate the 95% confidence interval associated to them.

#### Objective Evaluation: Metrics, Significance, Runtime...

| Approach | $E_{\min}\downarrow$ | $D_{\mathrm{F}}\downarrow$ | Preference ↑      |
|----------|----------------------|----------------------------|-------------------|
| Mono     | 0.104                | 20.89                      | $0.090\pm0.042$   |
| PS-Reg   | 0.069                | 8.11                       | $0.451\pm0.066$   |
| Decorr   | 0.093                | 8.32                       | $0.457\pm0.064$   |
| PS-AR    | 0.074                | 0.62                       | $0.527\pm0.060$   |
| PS-NN    | 0.089                | 3.08                       | $0.582\pm0.057$   |
| PS-MTM   | 0.068                | 0.59                       | $0.608 \pm 0.050$ |
| Stereo   | 0.000                | 0.03                       | $0.908\pm0.042$   |

**Table 1**. Results for the objective  $(E_{\min}, D_F)$  and subjective (Preference  $\pm$  95% confidence interval) evaluations.

|        | PS-Reg | Decorr | PS-AR | PS-NN | PS-MTM | Stereo |
|--------|--------|--------|-------|-------|--------|--------|
| Mono   | 1      | 1      | 1     | 1     | 1      | 1      |
| PS-Reg |        | ×      | ×     | 1     | 1      | 1      |
| Decorr |        |        | ×     | 1     | 1      | 1      |
| PS-AR  |        |        |       | ×     | ×      | 1      |
| PS-NN  |        |        |       |       | ×      | 1      |
| PS-MTM |        |        |       |       |        | 1      |

**Table 2**. Pairwise statistical significance for the case of all
 test items (12 subjects times 7 excerpts, see Sec. 4.3). The obtained *p*-value threshold is 0.0053.

| Approach | Learnable                | $RTF\downarrow$ |      |
|----------|--------------------------|-----------------|------|
|          | parameters CPU           |                 | GPU  |
| Decorr   | 0                        | 0.25            | n/a  |
| PS-Reg   | 30.1 M                   | 0.32            | 0.21 |
| PS-NN    | $34.0\mathrm{M}^\dagger$ | 0.82            | n/a  |
| PS-MTM   | 34.5 M                   | 5.81            | 0.33 |
| PS-AR    | 34.5 M                   | 255.87          | 8.38 |

 
 Table 3. Number of learnable parameters and average real time factor (RTF). Superscript  $\dagger$  indicates an estimation of 0.5 M key-value pairs with B = 34 bands (Sec. 3.1). RTFs are measured on a Xeon(R) 2.20 GHz CPU and on a GeForce GTX 1080-Ti GPU.

#### **References:**

[1] Breebart et al. (2005), Parametric coding of stereo audio, EURASIP Journal on Advances on Signal Processing. [2] Chen et al. (2018), *PixelSNAIL: an improved autoregressive generative* model, ICML. [3] Radford et al. (2018), Improving language understanding by generative

pre-training, Technical Report.

[4] Chang et al. (2022), MaskGIT: masked generative image transformer, CVPR.







-50