High-Resolution Violin Transcription using Weak Labels

We present the *Multi-Stream Conformer (MUSC)*, a SOTA violin transcriber that converts **44.1 kHz raw audio** into **MIDI with 5.8ms time- and 10-cent frequency-resolution**, and without requiring frame-wise labels during training!

Nazif C. Tamer^b, Yigitcan Özer[#], Meinard Müller[#], Xavier Serra^b

b Music Technology Group, Universitat Pompeu Fabra, Barcelona, Spain, ♯International Audio Laboratories Erlangen, Germany

Architecture

CNNs and Conformer blocks convert raw audio into 4 representations, then postprocessing creates the MIDI with pitch bends.

MIDI transcription with pitch bends

Training

As a large-scale violin dataset with frame-wise labels do not exist, MUSC generates its frame-wise training labels by aligning its own onset, offset, and frame feature representations with music score.

Dataset: It is trained on 120 violin etudes from three books & their unaligned YouTube recordings.

Method	Etudes	Players	Performances	Duration (h)
Paganini, Op. 1	24	10	235	13:00
Wohlfahrt, Op. 45	60	6	506	11:36
Kayser, Op. 20	41	8	280	09:48
Total	120	22	1021	34:23

The released dataset can be found on GitHub, with the frame-wise

44.1 kHz waveform

Tests yield SOTA performance for two proxy tasks: Violin Transcription & Pitch Estimation

Transcription

Compared with MT3¹ and Basic Pitch² on two datasets. (URMP is involved in MT3 training set.)

	URMP			Bach10				
	Р	R	F1	$F1_{no}$	P	R	F1	$F1_{no}$
MUSC	86.5	83.1	84.6	93.0	65.0	64.8	64.8	77.0
MT3 ¹	79.1	87.1	82.2	88.9	54.2	51.5	52.7	62.0
BP ²	58.8	67.9	62.8	83.3	33.6	43.2	37.6	57.5

¹ J. Gardner, I. Simon, E. Manilow, C. Hawthorne, and J. H. Engel, "MT3: multi-task multitrack music transcription," in CoRR, 2021. ² R. M. Bittner et al., "A lightweight instrument agnostic model for polyphonic note transcription and multipitch estimation," in Proc. ICASSP, 2022.

- ³ J. W. Kim, J. Salamon, P. Li, and J. P. Bello, "CREPE: A convolutional representation for pitch estimation," in Proc. ICASSP, 2018.
- ⁴A. de Cheveigné and H. Kawahara, "YIN, a fundamental frequency estimator for speech and music." in JASA, 2002.
- ⁵M. Mauch and S. Dixon, "pYIN: A fundamental frequency estimator using probabilistic threshold distributions," in Proc. ICASSP), 2014.
- ⁶A. Camacho and J. G. Harris, "A sawtooth waveform inspired pitch estimator for speech and music," in JASA, 2008.

Pitch Estimation

Compared with CREPE³, YIN⁴, pYIN⁵, and SWIPE⁶ (v: Viterbi postprocessing, Bach10 is involved in CREPE training set)

	UR	MP	Bach10		
	RPA50	RPA10	RPA50	RPA10	
MUSC	98.3	89.0	98.3	86.9	
vMUSC	98.6	89.4	98.4	87.0	
CREPE ³	96.4	87.2	98.6	88.1	
vCREPE	97.3	88.4	98.6	88.1	
YIN⁴	95.3	88.4	97.1	81.7	
pYIN⁵	97.2	88.6	97.4	80.3	
SWIPE⁶	97.2	89.3	97.7	84.3	